Metamath Proof Explorer


Theorem eqresfnbd

Description: Property of being the restriction of a function. Note that this is closer to funssres than fnssres . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses eqresfnbd.g φFFnB
eqresfnbd.1 φAB
Assertion eqresfnbd φR=FARFnARF

Proof

Step Hyp Ref Expression
1 eqresfnbd.g φFFnB
2 eqresfnbd.1 φAB
3 1 2 fnssresd φFAFnA
4 resss FAF
5 3 4 jctir φFAFnAFAF
6 fneq1 R=FARFnAFAFnA
7 sseq1 R=FARFFAF
8 6 7 anbi12d R=FARFnARFFAFnAFAF
9 5 8 syl5ibrcom φR=FARFnARF
10 1 fnfund φFunF
11 10 adantr φRFnAFunF
12 funssres FunFRFFdomR=R
13 12 eqcomd FunFRFR=FdomR
14 fndm RFnAdomR=A
15 14 adantl φRFnAdomR=A
16 15 reseq2d φRFnAFdomR=FA
17 16 eqeq2d φRFnAR=FdomRR=FA
18 13 17 imbitrid φRFnAFunFRFR=FA
19 11 18 mpand φRFnARFR=FA
20 19 expimpd φRFnARFR=FA
21 9 20 impbid φR=FARFnARF