Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg1rt.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1dg1rt.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
ply1dg1rt.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
4 |
|
ply1dg1rt.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
5 |
|
ply1dg1rt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
ply1dg1rtn0.r |
⊢ ( 𝜑 → 𝑅 ∈ Field ) |
7 |
|
ply1dg1rtn0.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑈 ) |
8 |
|
ply1dg1rtn0.1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = 1 ) |
9 |
|
ovex |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) ∈ V |
10 |
9
|
snid |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) ∈ { ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) } |
11 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = ( ( coe1 ‘ 𝐺 ) ‘ 1 ) |
15 |
|
eqid |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) = ( ( coe1 ‘ 𝐺 ) ‘ 0 ) |
16 |
|
eqid |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) |
17 |
1 2 3 4 5 6 7 8 11 12 13 14 15 16
|
ply1dg1rt |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) } ) |
18 |
10 17
|
eleqtrrid |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ( /r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) ) |
19 |
18
|
ne0d |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) ≠ ∅ ) |