Metamath Proof Explorer


Theorem ply1dg1rtn0

Description: Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg1rt.p 𝑃 = ( Poly1𝑅 )
ply1dg1rt.u 𝑈 = ( Base ‘ 𝑃 )
ply1dg1rt.o 𝑂 = ( eval1𝑅 )
ply1dg1rt.d 𝐷 = ( deg1𝑅 )
ply1dg1rt.0 0 = ( 0g𝑅 )
ply1dg1rtn0.r ( 𝜑𝑅 ∈ Field )
ply1dg1rtn0.g ( 𝜑𝐺𝑈 )
ply1dg1rtn0.1 ( 𝜑 → ( 𝐷𝐺 ) = 1 )
Assertion ply1dg1rtn0 ( 𝜑 → ( ( 𝑂𝐺 ) “ { 0 } ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ply1dg1rt.p 𝑃 = ( Poly1𝑅 )
2 ply1dg1rt.u 𝑈 = ( Base ‘ 𝑃 )
3 ply1dg1rt.o 𝑂 = ( eval1𝑅 )
4 ply1dg1rt.d 𝐷 = ( deg1𝑅 )
5 ply1dg1rt.0 0 = ( 0g𝑅 )
6 ply1dg1rtn0.r ( 𝜑𝑅 ∈ Field )
7 ply1dg1rtn0.g ( 𝜑𝐺𝑈 )
8 ply1dg1rtn0.1 ( 𝜑 → ( 𝐷𝐺 ) = 1 )
9 ovex ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) ∈ V
10 9 snid ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) ∈ { ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) }
11 eqid ( invg𝑅 ) = ( invg𝑅 )
12 eqid ( /r𝑅 ) = ( /r𝑅 )
13 eqid ( coe1𝐺 ) = ( coe1𝐺 )
14 eqid ( ( coe1𝐺 ) ‘ 1 ) = ( ( coe1𝐺 ) ‘ 1 )
15 eqid ( ( coe1𝐺 ) ‘ 0 ) = ( ( coe1𝐺 ) ‘ 0 )
16 eqid ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) = ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) )
17 1 2 3 4 5 6 7 8 11 12 13 14 15 16 ply1dg1rt ( 𝜑 → ( ( 𝑂𝐺 ) “ { 0 } ) = { ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) } )
18 10 17 eleqtrrid ( 𝜑 → ( ( ( invg𝑅 ) ‘ ( ( coe1𝐺 ) ‘ 0 ) ) ( /r𝑅 ) ( ( coe1𝐺 ) ‘ 1 ) ) ∈ ( ( 𝑂𝐺 ) “ { 0 } ) )
19 18 ne0d ( 𝜑 → ( ( 𝑂𝐺 ) “ { 0 } ) ≠ ∅ )