| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg1rt.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1dg1rt.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1dg1rt.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 4 |
|
ply1dg1rt.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 5 |
|
ply1dg1rt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
ply1mulrtss.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
ply1mulrtss.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) |
| 8 |
|
ply1mulrtss.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑈 ) |
| 9 |
|
ply1mulrtss.1 |
⊢ · = ( .r ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
3 1 2 6 10 7
|
evl1fvf |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 12 |
11
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) Fn ( Base ‘ 𝑅 ) ) |
| 13 |
|
fniniseg2 |
⊢ ( ( 𝑂 ‘ 𝐹 ) Fn ( Base ‘ 𝑅 ) → ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ↔ 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
| 17 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 18 |
16 17
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 19 |
18
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝑅 ∈ CRing ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝐹 ∈ 𝑈 ) |
| 22 |
18
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 23 |
21 22
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( 𝐹 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝐺 ∈ 𝑈 ) |
| 25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 26 |
24 25
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( 𝐺 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 27 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 28 |
3 1 10 2 20 19 23 26 9 27
|
evl1muld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝐹 · 𝐺 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = ( 0 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = ( 0 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 30 |
20
|
crngringd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝑅 ∈ Ring ) |
| 31 |
3 1 10 2 20 19 24
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
10 27 5 30 31
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
| 33 |
29 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 ) |
| 34 |
19 33
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 ) ) |
| 35 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 } ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 ) ) |
| 36 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 38 |
37
|
crngringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 39 |
2 9 38 7 8
|
ringcld |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝑈 ) |
| 40 |
3 1 2 6 10 39
|
evl1fvf |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 41 |
40
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) Fn ( Base ‘ 𝑅 ) ) |
| 42 |
|
fniniseg2 |
⊢ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) Fn ( Base ‘ 𝑅 ) → ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 } ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 } ) |
| 44 |
43
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ↔ 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 } ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 } ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ) |
| 46 |
35 45
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ) |
| 47 |
34 46
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ) |
| 48 |
47
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ) ) |
| 49 |
48
|
ssrdv |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 0 } ) ⊆ ( ◡ ( 𝑂 ‘ ( 𝐹 · 𝐺 ) ) “ { 0 } ) ) |