| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg1rt.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1dg1rt.u |
|- U = ( Base ` P ) |
| 3 |
|
ply1dg1rt.o |
|- O = ( eval1 ` R ) |
| 4 |
|
ply1dg1rt.d |
|- D = ( deg1 ` R ) |
| 5 |
|
ply1dg1rt.0 |
|- .0. = ( 0g ` R ) |
| 6 |
|
ply1mulrtss.r |
|- ( ph -> R e. CRing ) |
| 7 |
|
ply1mulrtss.f |
|- ( ph -> F e. U ) |
| 8 |
|
ply1mulrtss.g |
|- ( ph -> G e. U ) |
| 9 |
|
ply1mulrtss.1 |
|- .x. = ( .r ` P ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
3 1 2 6 10 7
|
evl1fvf |
|- ( ph -> ( O ` F ) : ( Base ` R ) --> ( Base ` R ) ) |
| 12 |
11
|
ffnd |
|- ( ph -> ( O ` F ) Fn ( Base ` R ) ) |
| 13 |
|
fniniseg2 |
|- ( ( O ` F ) Fn ( Base ` R ) -> ( `' ( O ` F ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` F ) ` x ) = .0. } ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( `' ( O ` F ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` F ) ` x ) = .0. } ) |
| 15 |
14
|
eleq2d |
|- ( ph -> ( x e. ( `' ( O ` F ) " { .0. } ) <-> x e. { x e. ( Base ` R ) | ( ( O ` F ) ` x ) = .0. } ) ) |
| 16 |
15
|
biimpa |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> x e. { x e. ( Base ` R ) | ( ( O ` F ) ` x ) = .0. } ) |
| 17 |
|
rabid |
|- ( x e. { x e. ( Base ` R ) | ( ( O ` F ) ` x ) = .0. } <-> ( x e. ( Base ` R ) /\ ( ( O ` F ) ` x ) = .0. ) ) |
| 18 |
16 17
|
sylib |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( x e. ( Base ` R ) /\ ( ( O ` F ) ` x ) = .0. ) ) |
| 19 |
18
|
simpld |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> x e. ( Base ` R ) ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> R e. CRing ) |
| 21 |
7
|
adantr |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> F e. U ) |
| 22 |
18
|
simprd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( O ` F ) ` x ) = .0. ) |
| 23 |
21 22
|
jca |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( F e. U /\ ( ( O ` F ) ` x ) = .0. ) ) |
| 24 |
8
|
adantr |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> G e. U ) |
| 25 |
|
eqidd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( O ` G ) ` x ) = ( ( O ` G ) ` x ) ) |
| 26 |
24 25
|
jca |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( G e. U /\ ( ( O ` G ) ` x ) = ( ( O ` G ) ` x ) ) ) |
| 27 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 28 |
3 1 10 2 20 19 23 26 9 27
|
evl1muld |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( F .x. G ) e. U /\ ( ( O ` ( F .x. G ) ) ` x ) = ( .0. ( .r ` R ) ( ( O ` G ) ` x ) ) ) ) |
| 29 |
28
|
simprd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( O ` ( F .x. G ) ) ` x ) = ( .0. ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
| 30 |
20
|
crngringd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> R e. Ring ) |
| 31 |
3 1 10 2 20 19 24
|
fveval1fvcl |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( O ` G ) ` x ) e. ( Base ` R ) ) |
| 32 |
10 27 5 30 31
|
ringlzd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( .0. ( .r ` R ) ( ( O ` G ) ` x ) ) = .0. ) |
| 33 |
29 32
|
eqtrd |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( ( O ` ( F .x. G ) ) ` x ) = .0. ) |
| 34 |
19 33
|
jca |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> ( x e. ( Base ` R ) /\ ( ( O ` ( F .x. G ) ) ` x ) = .0. ) ) |
| 35 |
|
rabid |
|- ( x e. { x e. ( Base ` R ) | ( ( O ` ( F .x. G ) ) ` x ) = .0. } <-> ( x e. ( Base ` R ) /\ ( ( O ` ( F .x. G ) ) ` x ) = .0. ) ) |
| 36 |
1
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
| 37 |
6 36
|
syl |
|- ( ph -> P e. CRing ) |
| 38 |
37
|
crngringd |
|- ( ph -> P e. Ring ) |
| 39 |
2 9 38 7 8
|
ringcld |
|- ( ph -> ( F .x. G ) e. U ) |
| 40 |
3 1 2 6 10 39
|
evl1fvf |
|- ( ph -> ( O ` ( F .x. G ) ) : ( Base ` R ) --> ( Base ` R ) ) |
| 41 |
40
|
ffnd |
|- ( ph -> ( O ` ( F .x. G ) ) Fn ( Base ` R ) ) |
| 42 |
|
fniniseg2 |
|- ( ( O ` ( F .x. G ) ) Fn ( Base ` R ) -> ( `' ( O ` ( F .x. G ) ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` ( F .x. G ) ) ` x ) = .0. } ) |
| 43 |
41 42
|
syl |
|- ( ph -> ( `' ( O ` ( F .x. G ) ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` ( F .x. G ) ) ` x ) = .0. } ) |
| 44 |
43
|
eleq2d |
|- ( ph -> ( x e. ( `' ( O ` ( F .x. G ) ) " { .0. } ) <-> x e. { x e. ( Base ` R ) | ( ( O ` ( F .x. G ) ) ` x ) = .0. } ) ) |
| 45 |
44
|
biimpar |
|- ( ( ph /\ x e. { x e. ( Base ` R ) | ( ( O ` ( F .x. G ) ) ` x ) = .0. } ) -> x e. ( `' ( O ` ( F .x. G ) ) " { .0. } ) ) |
| 46 |
35 45
|
sylan2br |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ ( ( O ` ( F .x. G ) ) ` x ) = .0. ) ) -> x e. ( `' ( O ` ( F .x. G ) ) " { .0. } ) ) |
| 47 |
34 46
|
syldan |
|- ( ( ph /\ x e. ( `' ( O ` F ) " { .0. } ) ) -> x e. ( `' ( O ` ( F .x. G ) ) " { .0. } ) ) |
| 48 |
47
|
ex |
|- ( ph -> ( x e. ( `' ( O ` F ) " { .0. } ) -> x e. ( `' ( O ` ( F .x. G ) ) " { .0. } ) ) ) |
| 49 |
48
|
ssrdv |
|- ( ph -> ( `' ( O ` F ) " { .0. } ) C_ ( `' ( O ` ( F .x. G ) ) " { .0. } ) ) |