Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg3rt0irred.z |
|- .0. = ( 0g ` F ) |
2 |
|
ply1dg3rt0irred.o |
|- O = ( eval1 ` F ) |
3 |
|
ply1dg3rt0irred.d |
|- D = ( deg1 ` F ) |
4 |
|
ply1dg3rt0irred.p |
|- P = ( Poly1 ` F ) |
5 |
|
ply1dg3rt0irred.b |
|- B = ( Base ` P ) |
6 |
|
ply1dg3rt0irred.f |
|- ( ph -> F e. Field ) |
7 |
|
ply1dg3rt0irred.q |
|- ( ph -> Q e. B ) |
8 |
|
ply1dg3rt0irred.1 |
|- ( ph -> ( `' ( O ` Q ) " { .0. } ) = (/) ) |
9 |
|
ply1dg3rt0irred.2 |
|- ( ph -> ( D ` Q ) = 3 ) |
10 |
|
3ne0 |
|- 3 =/= 0 |
11 |
10
|
a1i |
|- ( ph -> 3 =/= 0 ) |
12 |
9 11
|
eqnetrd |
|- ( ph -> ( D ` Q ) =/= 0 ) |
13 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
14 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
15 |
7 5
|
eleqtrdi |
|- ( ph -> Q e. ( Base ` P ) ) |
16 |
4 13 14 1 6 3 15
|
ply1unit |
|- ( ph -> ( Q e. ( Unit ` P ) <-> ( D ` Q ) = 0 ) ) |
17 |
16
|
necon3bbid |
|- ( ph -> ( -. Q e. ( Unit ` P ) <-> ( D ` Q ) =/= 0 ) ) |
18 |
12 17
|
mpbird |
|- ( ph -> -. Q e. ( Unit ` P ) ) |
19 |
7 18
|
eldifd |
|- ( ph -> Q e. ( B \ ( Unit ` P ) ) ) |
20 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> F e. Field ) |
21 |
|
simpllr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> p e. ( B \ ( Unit ` P ) ) ) |
22 |
21
|
eldifad |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> p e. B ) |
23 |
22 5
|
eleqtrdi |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> p e. ( Base ` P ) ) |
24 |
4 13 14 1 20 3 23
|
ply1unit |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( p e. ( Unit ` P ) <-> ( D ` p ) = 0 ) ) |
25 |
24
|
biimpar |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 0 ) -> p e. ( Unit ` P ) ) |
26 |
21
|
eldifbd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> -. p e. ( Unit ` P ) ) |
27 |
26
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 0 ) -> -. p e. ( Unit ` P ) ) |
28 |
25 27
|
pm2.21fal |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 0 ) -> F. ) |
29 |
28
|
adantlr |
|- ( ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 0 , 1 } ) /\ ( D ` p ) = 0 ) -> F. ) |
30 |
6
|
fldcrngd |
|- ( ph -> F e. CRing ) |
31 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> F e. CRing ) |
32 |
|
simplr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> q e. ( B \ ( Unit ` P ) ) ) |
33 |
32
|
eldifad |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> q e. B ) |
34 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
35 |
4 5 2 3 1 31 22 33 34
|
ply1mulrtss |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` p ) " { .0. } ) C_ ( `' ( O ` ( p ( .r ` P ) q ) ) " { .0. } ) ) |
36 |
|
simpr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( p ( .r ` P ) q ) = Q ) |
37 |
36
|
fveq2d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( O ` ( p ( .r ` P ) q ) ) = ( O ` Q ) ) |
38 |
37
|
cnveqd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> `' ( O ` ( p ( .r ` P ) q ) ) = `' ( O ` Q ) ) |
39 |
38
|
imaeq1d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` ( p ( .r ` P ) q ) ) " { .0. } ) = ( `' ( O ` Q ) " { .0. } ) ) |
40 |
35 39
|
sseqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` p ) " { .0. } ) C_ ( `' ( O ` Q ) " { .0. } ) ) |
41 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` Q ) " { .0. } ) = (/) ) |
42 |
40 41
|
sseqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` p ) " { .0. } ) C_ (/) ) |
43 |
|
ss0 |
|- ( ( `' ( O ` p ) " { .0. } ) C_ (/) -> ( `' ( O ` p ) " { .0. } ) = (/) ) |
44 |
42 43
|
syl |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` p ) " { .0. } ) = (/) ) |
45 |
44
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> ( `' ( O ` p ) " { .0. } ) = (/) ) |
46 |
20
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> F e. Field ) |
47 |
22
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> p e. B ) |
48 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> ( D ` p ) = 1 ) |
49 |
4 5 2 3 1 46 47 48
|
ply1dg1rtn0 |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> ( `' ( O ` p ) " { .0. } ) =/= (/) ) |
50 |
45 49
|
pm2.21ddne |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 1 ) -> F. ) |
51 |
50
|
adantlr |
|- ( ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 0 , 1 } ) /\ ( D ` p ) = 1 ) -> F. ) |
52 |
|
elpri |
|- ( ( D ` p ) e. { 0 , 1 } -> ( ( D ` p ) = 0 \/ ( D ` p ) = 1 ) ) |
53 |
52
|
adantl |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 0 , 1 } ) -> ( ( D ` p ) = 0 \/ ( D ` p ) = 1 ) ) |
54 |
29 51 53
|
mpjaodan |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 0 , 1 } ) -> F. ) |
55 |
4 5 2 3 1 31 33 22 34
|
ply1mulrtss |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` q ) " { .0. } ) C_ ( `' ( O ` ( q ( .r ` P ) p ) ) " { .0. } ) ) |
56 |
|
fldidom |
|- ( F e. Field -> F e. IDomn ) |
57 |
6 56
|
syl |
|- ( ph -> F e. IDomn ) |
58 |
4
|
ply1idom |
|- ( F e. IDomn -> P e. IDomn ) |
59 |
57 58
|
syl |
|- ( ph -> P e. IDomn ) |
60 |
59
|
idomcringd |
|- ( ph -> P e. CRing ) |
61 |
60
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> P e. CRing ) |
62 |
5 34 61 33 22
|
crngcomd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( q ( .r ` P ) p ) = ( p ( .r ` P ) q ) ) |
63 |
62 36
|
eqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( q ( .r ` P ) p ) = Q ) |
64 |
63
|
fveq2d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( O ` ( q ( .r ` P ) p ) ) = ( O ` Q ) ) |
65 |
64
|
cnveqd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> `' ( O ` ( q ( .r ` P ) p ) ) = `' ( O ` Q ) ) |
66 |
65
|
imaeq1d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` ( q ( .r ` P ) p ) ) " { .0. } ) = ( `' ( O ` Q ) " { .0. } ) ) |
67 |
66 41
|
eqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` ( q ( .r ` P ) p ) ) " { .0. } ) = (/) ) |
68 |
55 67
|
sseqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` q ) " { .0. } ) C_ (/) ) |
69 |
|
ss0 |
|- ( ( `' ( O ` q ) " { .0. } ) C_ (/) -> ( `' ( O ` q ) " { .0. } ) = (/) ) |
70 |
68 69
|
syl |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( `' ( O ` q ) " { .0. } ) = (/) ) |
71 |
70
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( `' ( O ` q ) " { .0. } ) = (/) ) |
72 |
20
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> F e. Field ) |
73 |
33
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> q e. B ) |
74 |
30
|
crngringd |
|- ( ph -> F e. Ring ) |
75 |
74
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> F e. Ring ) |
76 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
77 |
59
|
idomdomd |
|- ( ph -> P e. Domn ) |
78 |
77
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> P e. Domn ) |
79 |
|
3nn0 |
|- 3 e. NN0 |
80 |
9 79
|
eqeltrdi |
|- ( ph -> ( D ` Q ) e. NN0 ) |
81 |
3 4 76 5
|
deg1nn0clb |
|- ( ( F e. Ring /\ Q e. B ) -> ( Q =/= ( 0g ` P ) <-> ( D ` Q ) e. NN0 ) ) |
82 |
81
|
biimpar |
|- ( ( ( F e. Ring /\ Q e. B ) /\ ( D ` Q ) e. NN0 ) -> Q =/= ( 0g ` P ) ) |
83 |
74 7 80 82
|
syl21anc |
|- ( ph -> Q =/= ( 0g ` P ) ) |
84 |
83
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> Q =/= ( 0g ` P ) ) |
85 |
36 84
|
eqnetrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( p ( .r ` P ) q ) =/= ( 0g ` P ) ) |
86 |
5 34 76 78 22 33 85
|
domnmuln0rd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( p =/= ( 0g ` P ) /\ q =/= ( 0g ` P ) ) ) |
87 |
86
|
simpld |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> p =/= ( 0g ` P ) ) |
88 |
3 4 76 5
|
deg1nn0cl |
|- ( ( F e. Ring /\ p e. B /\ p =/= ( 0g ` P ) ) -> ( D ` p ) e. NN0 ) |
89 |
75 22 87 88
|
syl3anc |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) e. NN0 ) |
90 |
89
|
nn0cnd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) e. CC ) |
91 |
86
|
simprd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> q =/= ( 0g ` P ) ) |
92 |
3 4 76 5
|
deg1nn0cl |
|- ( ( F e. Ring /\ q e. B /\ q =/= ( 0g ` P ) ) -> ( D ` q ) e. NN0 ) |
93 |
75 33 91 92
|
syl3anc |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` q ) e. NN0 ) |
94 |
93
|
nn0cnd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` q ) e. CC ) |
95 |
36
|
fveq2d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` ( p ( .r ` P ) q ) ) = ( D ` Q ) ) |
96 |
57
|
idomdomd |
|- ( ph -> F e. Domn ) |
97 |
96
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> F e. Domn ) |
98 |
3 4 5 34 76 97 22 87 33 91
|
deg1mul |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` ( p ( .r ` P ) q ) ) = ( ( D ` p ) + ( D ` q ) ) ) |
99 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` Q ) = 3 ) |
100 |
95 98 99
|
3eqtr3d |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( ( D ` p ) + ( D ` q ) ) = 3 ) |
101 |
90 94 100
|
mvlladdd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` q ) = ( 3 - ( D ` p ) ) ) |
102 |
101
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( D ` q ) = ( 3 - ( D ` p ) ) ) |
103 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( D ` p ) = 2 ) |
104 |
103
|
oveq2d |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( 3 - ( D ` p ) ) = ( 3 - 2 ) ) |
105 |
|
3cn |
|- 3 e. CC |
106 |
|
2cn |
|- 2 e. CC |
107 |
|
ax-1cn |
|- 1 e. CC |
108 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
109 |
105 106 107 108
|
subaddrii |
|- ( 3 - 2 ) = 1 |
110 |
109
|
a1i |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( 3 - 2 ) = 1 ) |
111 |
102 104 110
|
3eqtrd |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( D ` q ) = 1 ) |
112 |
4 5 2 3 1 72 73 111
|
ply1dg1rtn0 |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> ( `' ( O ` q ) " { .0. } ) =/= (/) ) |
113 |
71 112
|
pm2.21ddne |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 2 ) -> F. ) |
114 |
113
|
adantlr |
|- ( ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 2 , 3 } ) /\ ( D ` p ) = 2 ) -> F. ) |
115 |
101
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( D ` q ) = ( 3 - ( D ` p ) ) ) |
116 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( D ` p ) = 3 ) |
117 |
116
|
oveq2d |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( 3 - ( D ` p ) ) = ( 3 - 3 ) ) |
118 |
105
|
subidi |
|- ( 3 - 3 ) = 0 |
119 |
118
|
a1i |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( 3 - 3 ) = 0 ) |
120 |
115 117 119
|
3eqtrd |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( D ` q ) = 0 ) |
121 |
20
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> F e. Field ) |
122 |
33 5
|
eleqtrdi |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> q e. ( Base ` P ) ) |
123 |
122
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> q e. ( Base ` P ) ) |
124 |
4 13 14 1 121 3 123
|
ply1unit |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> ( q e. ( Unit ` P ) <-> ( D ` q ) = 0 ) ) |
125 |
120 124
|
mpbird |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> q e. ( Unit ` P ) ) |
126 |
32
|
eldifbd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> -. q e. ( Unit ` P ) ) |
127 |
126
|
adantr |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> -. q e. ( Unit ` P ) ) |
128 |
125 127
|
pm2.21fal |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) = 3 ) -> F. ) |
129 |
128
|
adantlr |
|- ( ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 2 , 3 } ) /\ ( D ` p ) = 3 ) -> F. ) |
130 |
|
elpri |
|- ( ( D ` p ) e. { 2 , 3 } -> ( ( D ` p ) = 2 \/ ( D ` p ) = 3 ) ) |
131 |
130
|
adantl |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 2 , 3 } ) -> ( ( D ` p ) = 2 \/ ( D ` p ) = 3 ) ) |
132 |
114 129 131
|
mpjaodan |
|- ( ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) /\ ( D ` p ) e. { 2 , 3 } ) -> F. ) |
133 |
79
|
a1i |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> 3 e. NN0 ) |
134 |
89
|
nn0red |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) e. RR ) |
135 |
|
nn0addge1 |
|- ( ( ( D ` p ) e. RR /\ ( D ` q ) e. NN0 ) -> ( D ` p ) <_ ( ( D ` p ) + ( D ` q ) ) ) |
136 |
134 93 135
|
syl2anc |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) <_ ( ( D ` p ) + ( D ` q ) ) ) |
137 |
136 100
|
breqtrd |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) <_ 3 ) |
138 |
|
fznn0 |
|- ( 3 e. NN0 -> ( ( D ` p ) e. ( 0 ... 3 ) <-> ( ( D ` p ) e. NN0 /\ ( D ` p ) <_ 3 ) ) ) |
139 |
138
|
biimpar |
|- ( ( 3 e. NN0 /\ ( ( D ` p ) e. NN0 /\ ( D ` p ) <_ 3 ) ) -> ( D ` p ) e. ( 0 ... 3 ) ) |
140 |
133 89 137 139
|
syl12anc |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) e. ( 0 ... 3 ) ) |
141 |
|
fz0to3un2pr |
|- ( 0 ... 3 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
142 |
140 141
|
eleqtrdi |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( D ` p ) e. ( { 0 , 1 } u. { 2 , 3 } ) ) |
143 |
|
elun |
|- ( ( D ` p ) e. ( { 0 , 1 } u. { 2 , 3 } ) <-> ( ( D ` p ) e. { 0 , 1 } \/ ( D ` p ) e. { 2 , 3 } ) ) |
144 |
142 143
|
sylib |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> ( ( D ` p ) e. { 0 , 1 } \/ ( D ` p ) e. { 2 , 3 } ) ) |
145 |
54 132 144
|
mpjaodan |
|- ( ( ( ( ph /\ p e. ( B \ ( Unit ` P ) ) ) /\ q e. ( B \ ( Unit ` P ) ) ) /\ ( p ( .r ` P ) q ) = Q ) -> F. ) |
146 |
145
|
r19.29ffa |
|- ( ( ph /\ E. p e. ( B \ ( Unit ` P ) ) E. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) = Q ) -> F. ) |
147 |
146
|
inegd |
|- ( ph -> -. E. p e. ( B \ ( Unit ` P ) ) E. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) = Q ) |
148 |
|
ralnex2 |
|- ( A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) -. ( p ( .r ` P ) q ) = Q <-> -. E. p e. ( B \ ( Unit ` P ) ) E. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) = Q ) |
149 |
147 148
|
sylibr |
|- ( ph -> A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) -. ( p ( .r ` P ) q ) = Q ) |
150 |
|
df-ne |
|- ( ( p ( .r ` P ) q ) =/= Q <-> -. ( p ( .r ` P ) q ) = Q ) |
151 |
150
|
2ralbii |
|- ( A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) =/= Q <-> A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) -. ( p ( .r ` P ) q ) = Q ) |
152 |
149 151
|
sylibr |
|- ( ph -> A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) =/= Q ) |
153 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
154 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
155 |
|
eqid |
|- ( B \ ( Unit ` P ) ) = ( B \ ( Unit ` P ) ) |
156 |
5 153 154 155 34
|
isirred |
|- ( Q e. ( Irred ` P ) <-> ( Q e. ( B \ ( Unit ` P ) ) /\ A. p e. ( B \ ( Unit ` P ) ) A. q e. ( B \ ( Unit ` P ) ) ( p ( .r ` P ) q ) =/= Q ) ) |
157 |
19 152 156
|
sylanbrc |
|- ( ph -> Q e. ( Irred ` P ) ) |