| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg1rt.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1dg1rt.u |
|- U = ( Base ` P ) |
| 3 |
|
ply1dg1rt.o |
|- O = ( eval1 ` R ) |
| 4 |
|
ply1dg1rt.d |
|- D = ( deg1 ` R ) |
| 5 |
|
ply1dg1rt.0 |
|- .0. = ( 0g ` R ) |
| 6 |
|
ply1dg1rtn0.r |
|- ( ph -> R e. Field ) |
| 7 |
|
ply1dg1rtn0.g |
|- ( ph -> G e. U ) |
| 8 |
|
ply1dg1rtn0.1 |
|- ( ph -> ( D ` G ) = 1 ) |
| 9 |
|
ovex |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. _V |
| 10 |
9
|
snid |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. { ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) } |
| 11 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 12 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
| 13 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 14 |
|
eqid |
|- ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` G ) ` 1 ) |
| 15 |
|
eqid |
|- ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` G ) ` 0 ) |
| 16 |
|
eqid |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) = ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) |
| 17 |
1 2 3 4 5 6 7 8 11 12 13 14 15 16
|
ply1dg1rt |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) = { ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) } ) |
| 18 |
10 17
|
eleqtrrid |
|- ( ph -> ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. ( `' ( O ` G ) " { .0. } ) ) |
| 19 |
18
|
ne0d |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) =/= (/) ) |