Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg1rt.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1dg1rt.u |
|- U = ( Base ` P ) |
3 |
|
ply1dg1rt.o |
|- O = ( eval1 ` R ) |
4 |
|
ply1dg1rt.d |
|- D = ( deg1 ` R ) |
5 |
|
ply1dg1rt.0 |
|- .0. = ( 0g ` R ) |
6 |
|
ply1dg1rtn0.r |
|- ( ph -> R e. Field ) |
7 |
|
ply1dg1rtn0.g |
|- ( ph -> G e. U ) |
8 |
|
ply1dg1rtn0.1 |
|- ( ph -> ( D ` G ) = 1 ) |
9 |
|
ovex |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. _V |
10 |
9
|
snid |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. { ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) } |
11 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
12 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
13 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
14 |
|
eqid |
|- ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` G ) ` 1 ) |
15 |
|
eqid |
|- ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` G ) ` 0 ) |
16 |
|
eqid |
|- ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) = ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) |
17 |
1 2 3 4 5 6 7 8 11 12 13 14 15 16
|
ply1dg1rt |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) = { ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) } ) |
18 |
10 17
|
eleqtrrid |
|- ( ph -> ( ( ( invg ` R ) ` ( ( coe1 ` G ) ` 0 ) ) ( /r ` R ) ( ( coe1 ` G ) ` 1 ) ) e. ( `' ( O ` G ) " { .0. } ) ) |
19 |
18
|
ne0d |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) =/= (/) ) |