Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg1rt.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1dg1rt.u |
|- U = ( Base ` P ) |
3 |
|
ply1dg1rt.o |
|- O = ( eval1 ` R ) |
4 |
|
ply1dg1rt.d |
|- D = ( deg1 ` R ) |
5 |
|
ply1dg1rt.0 |
|- .0. = ( 0g ` R ) |
6 |
|
ply1dg1rt.r |
|- ( ph -> R e. Field ) |
7 |
|
ply1dg1rt.g |
|- ( ph -> G e. U ) |
8 |
|
ply1dg1rt.1 |
|- ( ph -> ( D ` G ) = 1 ) |
9 |
|
ply1dg1rt.x |
|- N = ( invg ` R ) |
10 |
|
ply1dg1rt.m |
|- ./ = ( /r ` R ) |
11 |
|
ply1dg1rt.c |
|- C = ( coe1 ` G ) |
12 |
|
ply1dg1rt.a |
|- A = ( C ` 1 ) |
13 |
|
ply1dg1rt.b |
|- B = ( C ` 0 ) |
14 |
|
ply1dg1rt.z |
|- Z = ( ( N ` B ) ./ A ) |
15 |
6
|
fldcrngd |
|- ( ph -> R e. CRing ) |
16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
17 |
3 1 2 15 16 7
|
evl1fvf |
|- ( ph -> ( O ` G ) : ( Base ` R ) --> ( Base ` R ) ) |
18 |
17
|
ffnd |
|- ( ph -> ( O ` G ) Fn ( Base ` R ) ) |
19 |
|
fniniseg2 |
|- ( ( O ` G ) Fn ( Base ` R ) -> ( `' ( O ` G ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` G ) ` x ) = .0. } ) |
20 |
18 19
|
syl |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) = { x e. ( Base ` R ) | ( ( O ` G ) ` x ) = .0. } ) |
21 |
|
fveqeq2 |
|- ( x = Z -> ( ( ( O ` G ) ` x ) = .0. <-> ( ( O ` G ) ` Z ) = .0. ) ) |
22 |
15
|
crngringd |
|- ( ph -> R e. Ring ) |
23 |
15
|
crnggrpd |
|- ( ph -> R e. Grp ) |
24 |
|
0nn0 |
|- 0 e. NN0 |
25 |
11 2 1 16
|
coe1fvalcl |
|- ( ( G e. U /\ 0 e. NN0 ) -> ( C ` 0 ) e. ( Base ` R ) ) |
26 |
7 24 25
|
sylancl |
|- ( ph -> ( C ` 0 ) e. ( Base ` R ) ) |
27 |
13 26
|
eqeltrid |
|- ( ph -> B e. ( Base ` R ) ) |
28 |
16 9 23 27
|
grpinvcld |
|- ( ph -> ( N ` B ) e. ( Base ` R ) ) |
29 |
6
|
flddrngd |
|- ( ph -> R e. DivRing ) |
30 |
|
1nn0 |
|- 1 e. NN0 |
31 |
11 2 1 16
|
coe1fvalcl |
|- ( ( G e. U /\ 1 e. NN0 ) -> ( C ` 1 ) e. ( Base ` R ) ) |
32 |
7 30 31
|
sylancl |
|- ( ph -> ( C ` 1 ) e. ( Base ` R ) ) |
33 |
8
|
fveq2d |
|- ( ph -> ( C ` ( D ` G ) ) = ( C ` 1 ) ) |
34 |
8 30
|
eqeltrdi |
|- ( ph -> ( D ` G ) e. NN0 ) |
35 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
36 |
4 1 35 2
|
deg1nn0clb |
|- ( ( R e. Ring /\ G e. U ) -> ( G =/= ( 0g ` P ) <-> ( D ` G ) e. NN0 ) ) |
37 |
36
|
biimpar |
|- ( ( ( R e. Ring /\ G e. U ) /\ ( D ` G ) e. NN0 ) -> G =/= ( 0g ` P ) ) |
38 |
22 7 34 37
|
syl21anc |
|- ( ph -> G =/= ( 0g ` P ) ) |
39 |
4 1 35 2 5 11
|
deg1ldg |
|- ( ( R e. Ring /\ G e. U /\ G =/= ( 0g ` P ) ) -> ( C ` ( D ` G ) ) =/= .0. ) |
40 |
22 7 38 39
|
syl3anc |
|- ( ph -> ( C ` ( D ` G ) ) =/= .0. ) |
41 |
33 40
|
eqnetrrd |
|- ( ph -> ( C ` 1 ) =/= .0. ) |
42 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
43 |
16 42 5
|
drngunit |
|- ( R e. DivRing -> ( ( C ` 1 ) e. ( Unit ` R ) <-> ( ( C ` 1 ) e. ( Base ` R ) /\ ( C ` 1 ) =/= .0. ) ) ) |
44 |
43
|
biimpar |
|- ( ( R e. DivRing /\ ( ( C ` 1 ) e. ( Base ` R ) /\ ( C ` 1 ) =/= .0. ) ) -> ( C ` 1 ) e. ( Unit ` R ) ) |
45 |
29 32 41 44
|
syl12anc |
|- ( ph -> ( C ` 1 ) e. ( Unit ` R ) ) |
46 |
12 45
|
eqeltrid |
|- ( ph -> A e. ( Unit ` R ) ) |
47 |
16 42 10
|
dvrcl |
|- ( ( R e. Ring /\ ( N ` B ) e. ( Base ` R ) /\ A e. ( Unit ` R ) ) -> ( ( N ` B ) ./ A ) e. ( Base ` R ) ) |
48 |
22 28 46 47
|
syl3anc |
|- ( ph -> ( ( N ` B ) ./ A ) e. ( Base ` R ) ) |
49 |
14 48
|
eqeltrid |
|- ( ph -> Z e. ( Base ` R ) ) |
50 |
|
eqidd |
|- ( ph -> Z = Z ) |
51 |
|
eqeq1 |
|- ( x = Z -> ( x = Z <-> Z = Z ) ) |
52 |
51
|
imbi1d |
|- ( x = Z -> ( ( x = Z -> ( ( O ` G ) ` Z ) = .0. ) <-> ( Z = Z -> ( ( O ` G ) ` Z ) = .0. ) ) ) |
53 |
|
fveq2 |
|- ( x = Z -> ( ( O ` G ) ` x ) = ( ( O ` G ) ` Z ) ) |
54 |
53
|
adantl |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ x = Z ) -> ( ( O ` G ) ` x ) = ( ( O ` G ) ` Z ) ) |
55 |
23
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Grp ) |
56 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
57 |
22
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Ring ) |
58 |
12 32
|
eqeltrid |
|- ( ph -> A e. ( Base ` R ) ) |
59 |
58
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A e. ( Base ` R ) ) |
60 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
61 |
16 56 57 59 60
|
ringcld |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( A ( .r ` R ) x ) e. ( Base ` R ) ) |
62 |
28
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( N ` B ) e. ( Base ` R ) ) |
63 |
27
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> B e. ( Base ` R ) ) |
64 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
65 |
16 64
|
grprcan |
|- ( ( R e. Grp /\ ( ( A ( .r ` R ) x ) e. ( Base ` R ) /\ ( N ` B ) e. ( Base ` R ) /\ B e. ( Base ` R ) ) ) -> ( ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = ( ( N ` B ) ( +g ` R ) B ) <-> ( A ( .r ` R ) x ) = ( N ` B ) ) ) |
66 |
55 61 62 63 65
|
syl13anc |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = ( ( N ` B ) ( +g ` R ) B ) <-> ( A ( .r ` R ) x ) = ( N ` B ) ) ) |
67 |
15
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. CRing ) |
68 |
48
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( N ` B ) ./ A ) e. ( Base ` R ) ) |
69 |
16 56 67 68 59
|
crngcomd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( N ` B ) ./ A ) ( .r ` R ) A ) = ( A ( .r ` R ) ( ( N ` B ) ./ A ) ) ) |
70 |
46
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A e. ( Unit ` R ) ) |
71 |
16 42 10 56
|
dvrcan1 |
|- ( ( R e. Ring /\ ( N ` B ) e. ( Base ` R ) /\ A e. ( Unit ` R ) ) -> ( ( ( N ` B ) ./ A ) ( .r ` R ) A ) = ( N ` B ) ) |
72 |
57 62 70 71
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( N ` B ) ./ A ) ( .r ` R ) A ) = ( N ` B ) ) |
73 |
69 72
|
eqtr3d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( A ( .r ` R ) ( ( N ` B ) ./ A ) ) = ( N ` B ) ) |
74 |
73
|
eqeq2d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( A ( .r ` R ) x ) = ( A ( .r ` R ) ( ( N ` B ) ./ A ) ) <-> ( A ( .r ` R ) x ) = ( N ` B ) ) ) |
75 |
|
drngdomn |
|- ( R e. DivRing -> R e. Domn ) |
76 |
29 75
|
syl |
|- ( ph -> R e. Domn ) |
77 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
78 |
76 77
|
syl |
|- ( ph -> R e. NzRing ) |
79 |
78
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. NzRing ) |
80 |
42 5 79 70
|
unitnz |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A =/= .0. ) |
81 |
59 80
|
eldifsnd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A e. ( ( Base ` R ) \ { .0. } ) ) |
82 |
76
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Domn ) |
83 |
16 5 56 81 60 68 82
|
domnlcanb |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( A ( .r ` R ) x ) = ( A ( .r ` R ) ( ( N ` B ) ./ A ) ) <-> x = ( ( N ` B ) ./ A ) ) ) |
84 |
66 74 83
|
3bitr2rd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( ( N ` B ) ./ A ) <-> ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = ( ( N ` B ) ( +g ` R ) B ) ) ) |
85 |
16 64 5 9 55 63
|
grplinvd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( N ` B ) ( +g ` R ) B ) = .0. ) |
86 |
85
|
eqeq2d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = ( ( N ` B ) ( +g ` R ) B ) <-> ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = .0. ) ) |
87 |
84 86
|
bitr2d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = .0. <-> x = ( ( N ` B ) ./ A ) ) ) |
88 |
7
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> G e. U ) |
89 |
8
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( D ` G ) = 1 ) |
90 |
1 3 16 2 56 64 11 4 12 13 67 88 89 60
|
evl1deg1 |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( O ` G ) ` x ) = ( ( A ( .r ` R ) x ) ( +g ` R ) B ) ) |
91 |
90
|
eqeq1d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( O ` G ) ` x ) = .0. <-> ( ( A ( .r ` R ) x ) ( +g ` R ) B ) = .0. ) ) |
92 |
14
|
eqeq2i |
|- ( x = Z <-> x = ( ( N ` B ) ./ A ) ) |
93 |
92
|
a1i |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = Z <-> x = ( ( N ` B ) ./ A ) ) ) |
94 |
87 91 93
|
3bitr4d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( O ` G ) ` x ) = .0. <-> x = Z ) ) |
95 |
94
|
biimpar |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ x = Z ) -> ( ( O ` G ) ` x ) = .0. ) |
96 |
54 95
|
eqtr3d |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ x = Z ) -> ( ( O ` G ) ` Z ) = .0. ) |
97 |
96
|
ex |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = Z -> ( ( O ` G ) ` Z ) = .0. ) ) |
98 |
97
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( x = Z -> ( ( O ` G ) ` Z ) = .0. ) ) |
99 |
52 98 49
|
rspcdva |
|- ( ph -> ( Z = Z -> ( ( O ` G ) ` Z ) = .0. ) ) |
100 |
50 99
|
mpd |
|- ( ph -> ( ( O ` G ) ` Z ) = .0. ) |
101 |
94
|
biimpa |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ ( ( O ` G ) ` x ) = .0. ) -> x = Z ) |
102 |
21 49 100 101
|
rabeqsnd |
|- ( ph -> { x e. ( Base ` R ) | ( ( O ` G ) ` x ) = .0. } = { Z } ) |
103 |
20 102
|
eqtrd |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) = { Z } ) |