| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domncan.b |
|- B = ( Base ` R ) |
| 2 |
|
domncan.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
domncan.m |
|- .x. = ( .r ` R ) |
| 4 |
|
domncan.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
| 5 |
|
domncan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
domncan.z |
|- ( ph -> Z e. B ) |
| 7 |
|
domncan.r |
|- ( ph -> R e. Domn ) |
| 8 |
|
oveq1 |
|- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
| 9 |
|
oveq1 |
|- ( a = X -> ( a .x. c ) = ( X .x. c ) ) |
| 10 |
8 9
|
eqeq12d |
|- ( a = X -> ( ( a .x. b ) = ( a .x. c ) <-> ( X .x. b ) = ( X .x. c ) ) ) |
| 11 |
10
|
imbi1d |
|- ( a = X -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( X .x. b ) = ( X .x. c ) -> b = c ) ) ) |
| 12 |
|
oveq2 |
|- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
| 13 |
12
|
eqeq1d |
|- ( b = Y -> ( ( X .x. b ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. c ) ) ) |
| 14 |
|
eqeq1 |
|- ( b = Y -> ( b = c <-> Y = c ) ) |
| 15 |
13 14
|
imbi12d |
|- ( b = Y -> ( ( ( X .x. b ) = ( X .x. c ) -> b = c ) <-> ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) ) ) |
| 16 |
|
oveq2 |
|- ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) |
| 17 |
16
|
eqeq2d |
|- ( c = Z -> ( ( X .x. Y ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. Z ) ) ) |
| 18 |
|
eqeq2 |
|- ( c = Z -> ( Y = c <-> Y = Z ) ) |
| 19 |
17 18
|
imbi12d |
|- ( c = Z -> ( ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) <-> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) ) |
| 20 |
1 2 3
|
isdomn4 |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| 21 |
7 20
|
sylib |
|- ( ph -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| 22 |
21
|
simprd |
|- ( ph -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
| 23 |
11 15 19 22 4 5 6
|
rspc3dv |
|- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) |
| 24 |
|
oveq2 |
|- ( Y = Z -> ( X .x. Y ) = ( X .x. Z ) ) |
| 25 |
23 24
|
impbid1 |
|- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |