Step |
Hyp |
Ref |
Expression |
1 |
|
domncan.b |
|- B = ( Base ` R ) |
2 |
|
domncan.1 |
|- .0. = ( 0g ` R ) |
3 |
|
domncan.m |
|- .x. = ( .r ` R ) |
4 |
|
domncan.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
5 |
|
domncan.y |
|- ( ph -> Y e. B ) |
6 |
|
domncan.z |
|- ( ph -> Z e. B ) |
7 |
|
domnlcan.r |
|- ( ph -> R e. Domn ) |
8 |
|
domnlcan.2 |
|- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
9 |
|
oveq1 |
|- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
10 |
|
oveq1 |
|- ( a = X -> ( a .x. c ) = ( X .x. c ) ) |
11 |
9 10
|
eqeq12d |
|- ( a = X -> ( ( a .x. b ) = ( a .x. c ) <-> ( X .x. b ) = ( X .x. c ) ) ) |
12 |
11
|
imbi1d |
|- ( a = X -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( X .x. b ) = ( X .x. c ) -> b = c ) ) ) |
13 |
|
oveq2 |
|- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
14 |
13
|
eqeq1d |
|- ( b = Y -> ( ( X .x. b ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. c ) ) ) |
15 |
|
eqeq1 |
|- ( b = Y -> ( b = c <-> Y = c ) ) |
16 |
14 15
|
imbi12d |
|- ( b = Y -> ( ( ( X .x. b ) = ( X .x. c ) -> b = c ) <-> ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) ) ) |
17 |
|
oveq2 |
|- ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) |
18 |
17
|
eqeq2d |
|- ( c = Z -> ( ( X .x. Y ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. Z ) ) ) |
19 |
|
eqeq2 |
|- ( c = Z -> ( Y = c <-> Y = Z ) ) |
20 |
18 19
|
imbi12d |
|- ( c = Z -> ( ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) <-> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) ) |
21 |
1 2 3
|
isdomn4 |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
22 |
7 21
|
sylib |
|- ( ph -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
23 |
22
|
simprd |
|- ( ph -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
24 |
12 16 20 23 4 5 6
|
rspc3dv |
|- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) |
25 |
8 24
|
mpd |
|- ( ph -> Y = Z ) |