Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domncan.b | |- B = ( Base ` R ) |
|
| domncan.0 | |- .0. = ( 0g ` R ) |
||
| domncan.m | |- .x. = ( .r ` R ) |
||
| domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
||
| domncan.y | |- ( ph -> Y e. B ) |
||
| domncan.z | |- ( ph -> Z e. B ) |
||
| domncan.r | |- ( ph -> R e. Domn ) |
||
| domnlcan.1 | |- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
||
| Assertion | domnlcan | |- ( ph -> Y = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domncan.b | |- B = ( Base ` R ) |
|
| 2 | domncan.0 | |- .0. = ( 0g ` R ) |
|
| 3 | domncan.m | |- .x. = ( .r ` R ) |
|
| 4 | domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
|
| 5 | domncan.y | |- ( ph -> Y e. B ) |
|
| 6 | domncan.z | |- ( ph -> Z e. B ) |
|
| 7 | domncan.r | |- ( ph -> R e. Domn ) |
|
| 8 | domnlcan.1 | |- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
|
| 9 | 1 2 3 4 5 6 7 | domnlcanb | |- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |
| 10 | 8 9 | mpbid | |- ( ph -> Y = Z ) |