Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses idomrcan.b
|- B = ( Base ` R )
idomrcan.0
|- .0. = ( 0g ` R )
idomrcan.m
|- .x. = ( .r ` R )
idomrcan.x
|- ( ph -> X e. B )
idomrcan.y
|- ( ph -> Y e. B )
idomrcan.z
|- ( ph -> Z e. ( B \ { .0. } ) )
idomrcan.r
|- ( ph -> R e. IDomn )
idomrcan.1
|- ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
Assertion idomrcan
|- ( ph -> X = Y )

Proof

Step Hyp Ref Expression
1 idomrcan.b
 |-  B = ( Base ` R )
2 idomrcan.0
 |-  .0. = ( 0g ` R )
3 idomrcan.m
 |-  .x. = ( .r ` R )
4 idomrcan.x
 |-  ( ph -> X e. B )
5 idomrcan.y
 |-  ( ph -> Y e. B )
6 idomrcan.z
 |-  ( ph -> Z e. ( B \ { .0. } ) )
7 idomrcan.r
 |-  ( ph -> R e. IDomn )
8 idomrcan.1
 |-  ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
9 7 idomdomd
 |-  ( ph -> R e. Domn )
10 1 2 3 4 5 6 9 8 domnrcan
 |-  ( ph -> X = Y )