Step |
Hyp |
Ref |
Expression |
1 |
|
domncan.b |
|- B = ( Base ` R ) |
2 |
|
domncan.1 |
|- .0. = ( 0g ` R ) |
3 |
|
domncan.m |
|- .x. = ( .r ` R ) |
4 |
|
domncan.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
5 |
|
domncan.y |
|- ( ph -> Y e. B ) |
6 |
|
domncan.z |
|- ( ph -> Z e. B ) |
7 |
|
domnrcan.r |
|- ( ph -> R e. IDomn ) |
8 |
|
domnrcan.2 |
|- ( ph -> ( Y .x. X ) = ( Z .x. X ) ) |
9 |
7
|
idomdomd |
|- ( ph -> R e. Domn ) |
10 |
|
df-idom |
|- IDomn = ( CRing i^i Domn ) |
11 |
7 10
|
eleqtrdi |
|- ( ph -> R e. ( CRing i^i Domn ) ) |
12 |
11
|
elin1d |
|- ( ph -> R e. CRing ) |
13 |
4
|
eldifad |
|- ( ph -> X e. B ) |
14 |
1 3
|
crngcom |
|- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
15 |
12 13 5 14
|
syl3anc |
|- ( ph -> ( X .x. Y ) = ( Y .x. X ) ) |
16 |
1 3
|
crngcom |
|- ( ( R e. CRing /\ X e. B /\ Z e. B ) -> ( X .x. Z ) = ( Z .x. X ) ) |
17 |
12 13 6 16
|
syl3anc |
|- ( ph -> ( X .x. Z ) = ( Z .x. X ) ) |
18 |
8 15 17
|
3eqtr4d |
|- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
19 |
1 2 3 4 5 6 9 18
|
domnlcan |
|- ( ph -> Y = Z ) |