Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses domncan.b
|- B = ( Base ` R )
domncan.1
|- .0. = ( 0g ` R )
domncan.m
|- .x. = ( .r ` R )
domncan.x
|- ( ph -> X e. ( B \ { .0. } ) )
domncan.y
|- ( ph -> Y e. B )
domncan.z
|- ( ph -> Z e. B )
domnrcan.r
|- ( ph -> R e. IDomn )
domnrcan.2
|- ( ph -> ( Y .x. X ) = ( Z .x. X ) )
Assertion idomrcan
|- ( ph -> Y = Z )

Proof

Step Hyp Ref Expression
1 domncan.b
 |-  B = ( Base ` R )
2 domncan.1
 |-  .0. = ( 0g ` R )
3 domncan.m
 |-  .x. = ( .r ` R )
4 domncan.x
 |-  ( ph -> X e. ( B \ { .0. } ) )
5 domncan.y
 |-  ( ph -> Y e. B )
6 domncan.z
 |-  ( ph -> Z e. B )
7 domnrcan.r
 |-  ( ph -> R e. IDomn )
8 domnrcan.2
 |-  ( ph -> ( Y .x. X ) = ( Z .x. X ) )
9 7 idomdomd
 |-  ( ph -> R e. Domn )
10 df-idom
 |-  IDomn = ( CRing i^i Domn )
11 7 10 eleqtrdi
 |-  ( ph -> R e. ( CRing i^i Domn ) )
12 11 elin1d
 |-  ( ph -> R e. CRing )
13 4 eldifad
 |-  ( ph -> X e. B )
14 1 3 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )
15 12 13 5 14 syl3anc
 |-  ( ph -> ( X .x. Y ) = ( Y .x. X ) )
16 1 3 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Z e. B ) -> ( X .x. Z ) = ( Z .x. X ) )
17 12 13 6 16 syl3anc
 |-  ( ph -> ( X .x. Z ) = ( Z .x. X ) )
18 8 15 17 3eqtr4d
 |-  ( ph -> ( X .x. Y ) = ( X .x. Z ) )
19 1 2 3 4 5 6 9 18 domnlcan
 |-  ( ph -> Y = Z )