Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idomrcan.b | |- B = ( Base ` R ) |
|
idomrcan.0 | |- .0. = ( 0g ` R ) |
||
idomrcan.m | |- .x. = ( .r ` R ) |
||
idomrcan.x | |- ( ph -> X e. B ) |
||
idomrcan.y | |- ( ph -> Y e. B ) |
||
idomrcan.z | |- ( ph -> Z e. ( B \ { .0. } ) ) |
||
idomrcan.r | |- ( ph -> R e. IDomn ) |
||
idomrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
||
Assertion | idomrcan | |- ( ph -> X = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomrcan.b | |- B = ( Base ` R ) |
|
2 | idomrcan.0 | |- .0. = ( 0g ` R ) |
|
3 | idomrcan.m | |- .x. = ( .r ` R ) |
|
4 | idomrcan.x | |- ( ph -> X e. B ) |
|
5 | idomrcan.y | |- ( ph -> Y e. B ) |
|
6 | idomrcan.z | |- ( ph -> Z e. ( B \ { .0. } ) ) |
|
7 | idomrcan.r | |- ( ph -> R e. IDomn ) |
|
8 | idomrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
|
9 | 7 | idomdomd | |- ( ph -> R e. Domn ) |
10 | 1 2 3 4 5 6 9 8 | domnrcan | |- ( ph -> X = Y ) |