Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses idomrcan.b 𝐵 = ( Base ‘ 𝑅 )
idomrcan.0 0 = ( 0g𝑅 )
idomrcan.m · = ( .r𝑅 )
idomrcan.x ( 𝜑𝑋𝐵 )
idomrcan.y ( 𝜑𝑌𝐵 )
idomrcan.z ( 𝜑𝑍 ∈ ( 𝐵 ∖ { 0 } ) )
idomrcan.r ( 𝜑𝑅 ∈ IDomn )
idomrcan.1 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
Assertion idomrcan ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 idomrcan.b 𝐵 = ( Base ‘ 𝑅 )
2 idomrcan.0 0 = ( 0g𝑅 )
3 idomrcan.m · = ( .r𝑅 )
4 idomrcan.x ( 𝜑𝑋𝐵 )
5 idomrcan.y ( 𝜑𝑌𝐵 )
6 idomrcan.z ( 𝜑𝑍 ∈ ( 𝐵 ∖ { 0 } ) )
7 idomrcan.r ( 𝜑𝑅 ∈ IDomn )
8 idomrcan.1 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
9 7 idomdomd ( 𝜑𝑅 ∈ Domn )
10 1 2 3 4 5 6 9 8 domnrcan ( 𝜑𝑋 = 𝑌 )