Metamath Proof Explorer
Description: Right-cancellation law for integral domains. (Contributed by Thierry
Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
idomrcan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
idomrcan.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
idomrcan.m |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
idomrcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
idomrcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
idomrcan.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) ) |
|
|
idomrcan.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
|
|
idomrcan.1 |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
|
Assertion |
idomrcan |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
idomrcan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
idomrcan.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
idomrcan.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
idomrcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
idomrcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
idomrcan.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) ) |
7 |
|
idomrcan.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
8 |
|
idomrcan.1 |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
9 |
7
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
10 |
1 2 3 4 5 6 9 8
|
domnrcan |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |