Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses idomrcan.b B = Base R
idomrcan.0 0 ˙ = 0 R
idomrcan.m · ˙ = R
idomrcan.x φ X B
idomrcan.y φ Y B
idomrcan.z φ Z B 0 ˙
idomrcan.r φ R IDomn
idomrcan.1 φ X · ˙ Z = Y · ˙ Z
Assertion idomrcan φ X = Y

Proof

Step Hyp Ref Expression
1 idomrcan.b B = Base R
2 idomrcan.0 0 ˙ = 0 R
3 idomrcan.m · ˙ = R
4 idomrcan.x φ X B
5 idomrcan.y φ Y B
6 idomrcan.z φ Z B 0 ˙
7 idomrcan.r φ R IDomn
8 idomrcan.1 φ X · ˙ Z = Y · ˙ Z
9 7 idomdomd φ R Domn
10 1 2 3 4 5 6 9 8 domnrcan φ X = Y