Metamath Proof Explorer


Theorem idomdomd

Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypothesis idomringd.1 φRIDomn
Assertion idomdomd φRDomn

Proof

Step Hyp Ref Expression
1 idomringd.1 φRIDomn
2 df-idom IDomn=CRingDomn
3 1 2 eleqtrdi φRCRingDomn
4 3 elin2d φRDomn