Metamath Proof Explorer
Description: Anintegral domain is a commutative domain. (Contributed by Mario
Carneiro, 17-Jun-2015)
|
|
Ref |
Expression |
|
Assertion |
df-idom |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cidom |
|
1 |
|
ccrg |
|
2 |
|
cdomn |
|
3 |
1 2
|
cin |
|
4 |
0 3
|
wceq |
|