Metamath Proof Explorer


Theorem domnlcanOLD

Description: Obsolete version of domnlcan as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses domncanOLD.b B = Base R
domncanOLD.1 0 ˙ = 0 R
domncanOLD.m · ˙ = R
domncanOLD.x φ X B 0 ˙
domncanOLD.y φ Y B
domncanOLD.z φ Z B
domnlcanOLD.r φ R Domn
domnlcanOLD.2 φ X · ˙ Y = X · ˙ Z
Assertion domnlcanOLD φ Y = Z

Proof

Step Hyp Ref Expression
1 domncanOLD.b B = Base R
2 domncanOLD.1 0 ˙ = 0 R
3 domncanOLD.m · ˙ = R
4 domncanOLD.x φ X B 0 ˙
5 domncanOLD.y φ Y B
6 domncanOLD.z φ Z B
7 domnlcanOLD.r φ R Domn
8 domnlcanOLD.2 φ X · ˙ Y = X · ˙ Z
9 oveq1 a = X a · ˙ b = X · ˙ b
10 oveq1 a = X a · ˙ c = X · ˙ c
11 9 10 eqeq12d a = X a · ˙ b = a · ˙ c X · ˙ b = X · ˙ c
12 11 imbi1d a = X a · ˙ b = a · ˙ c b = c X · ˙ b = X · ˙ c b = c
13 oveq2 b = Y X · ˙ b = X · ˙ Y
14 13 eqeq1d b = Y X · ˙ b = X · ˙ c X · ˙ Y = X · ˙ c
15 eqeq1 b = Y b = c Y = c
16 14 15 imbi12d b = Y X · ˙ b = X · ˙ c b = c X · ˙ Y = X · ˙ c Y = c
17 oveq2 c = Z X · ˙ c = X · ˙ Z
18 17 eqeq2d c = Z X · ˙ Y = X · ˙ c X · ˙ Y = X · ˙ Z
19 eqeq2 c = Z Y = c Y = Z
20 18 19 imbi12d c = Z X · ˙ Y = X · ˙ c Y = c X · ˙ Y = X · ˙ Z Y = Z
21 1 2 3 isdomn4 R Domn R NzRing a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
22 7 21 sylib φ R NzRing a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
23 22 simprd φ a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
24 12 16 20 23 4 5 6 rspc3dv φ X · ˙ Y = X · ˙ Z Y = Z
25 8 24 mpd φ Y = Z