Metamath Proof Explorer


Theorem rspc3dv

Description: 3-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses rspc3dv.1 x=Aψθ
rspc3dv.2 y=Bθτ
rspc3dv.3 z=Cτχ
rspc3dv.4 φxDyEzFψ
rspc3dv.5 φAD
rspc3dv.6 φBE
rspc3dv.7 φCF
Assertion rspc3dv φχ

Proof

Step Hyp Ref Expression
1 rspc3dv.1 x=Aψθ
2 rspc3dv.2 y=Bθτ
3 rspc3dv.3 z=Cτχ
4 rspc3dv.4 φxDyEzFψ
5 rspc3dv.5 φAD
6 rspc3dv.6 φBE
7 rspc3dv.7 φCF
8 5 6 7 3jca φADBECF
9 1 2 3 rspc3v ADBECFxDyEzFψχ
10 8 4 9 sylc φχ