Metamath Proof Explorer
Description: 3-variable restricted specialization, using implicit substitution.
(Contributed by Scott Fenton, 10-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rspc3dv.1 |
|
|
|
rspc3dv.2 |
|
|
|
rspc3dv.3 |
|
|
|
rspc3dv.4 |
|
|
|
rspc3dv.5 |
|
|
|
rspc3dv.6 |
|
|
|
rspc3dv.7 |
|
|
Assertion |
rspc3dv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspc3dv.1 |
|
| 2 |
|
rspc3dv.2 |
|
| 3 |
|
rspc3dv.3 |
|
| 4 |
|
rspc3dv.4 |
|
| 5 |
|
rspc3dv.5 |
|
| 6 |
|
rspc3dv.6 |
|
| 7 |
|
rspc3dv.7 |
|
| 8 |
5 6 7
|
3jca |
|
| 9 |
1 2 3
|
rspc3v |
|
| 10 |
8 4 9
|
sylc |
|