| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domncanOLD.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | domncanOLD.1 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | domncanOLD.m |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | domncanOLD.x |  |-  ( ph -> X e. ( B \ { .0. } ) ) | 
						
							| 5 |  | domncanOLD.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | domncanOLD.z |  |-  ( ph -> Z e. B ) | 
						
							| 7 |  | domnlcanOLD.r |  |-  ( ph -> R e. Domn ) | 
						
							| 8 |  | domnlcanOLD.2 |  |-  ( ph -> ( X .x. Y ) = ( X .x. Z ) ) | 
						
							| 9 |  | oveq1 |  |-  ( a = X -> ( a .x. b ) = ( X .x. b ) ) | 
						
							| 10 |  | oveq1 |  |-  ( a = X -> ( a .x. c ) = ( X .x. c ) ) | 
						
							| 11 | 9 10 | eqeq12d |  |-  ( a = X -> ( ( a .x. b ) = ( a .x. c ) <-> ( X .x. b ) = ( X .x. c ) ) ) | 
						
							| 12 | 11 | imbi1d |  |-  ( a = X -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( X .x. b ) = ( X .x. c ) -> b = c ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( b = Y -> ( ( X .x. b ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. c ) ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( b = Y -> ( b = c <-> Y = c ) ) | 
						
							| 16 | 14 15 | imbi12d |  |-  ( b = Y -> ( ( ( X .x. b ) = ( X .x. c ) -> b = c ) <-> ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( c = Z -> ( ( X .x. Y ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. Z ) ) ) | 
						
							| 19 |  | eqeq2 |  |-  ( c = Z -> ( Y = c <-> Y = Z ) ) | 
						
							| 20 | 18 19 | imbi12d |  |-  ( c = Z -> ( ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) <-> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) ) | 
						
							| 21 | 1 2 3 | isdomn4 |  |-  ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) | 
						
							| 22 | 7 21 | sylib |  |-  ( ph -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) | 
						
							| 23 | 22 | simprd |  |-  ( ph -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) | 
						
							| 24 | 12 16 20 23 4 5 6 | rspc3dv |  |-  ( ph -> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) | 
						
							| 25 | 8 24 | mpd |  |-  ( ph -> Y = Z ) |