| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domncanOLD.b |
|- B = ( Base ` R ) |
| 2 |
|
domncanOLD.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
domncanOLD.m |
|- .x. = ( .r ` R ) |
| 4 |
|
domncanOLD.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
| 5 |
|
domncanOLD.y |
|- ( ph -> Y e. B ) |
| 6 |
|
domncanOLD.z |
|- ( ph -> Z e. B ) |
| 7 |
|
domnlcanbOLD.r |
|- ( ph -> R e. Domn ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> X e. ( B \ { .0. } ) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> Y e. B ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> Z e. B ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> R e. Domn ) |
| 12 |
|
simpr |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> ( X .x. Y ) = ( X .x. Z ) ) |
| 13 |
1 2 3 8 9 10 11 12
|
domnlcan |
|- ( ( ph /\ ( X .x. Y ) = ( X .x. Z ) ) -> Y = Z ) |
| 14 |
|
simpr |
|- ( ( ph /\ Y = Z ) -> Y = Z ) |
| 15 |
14
|
oveq2d |
|- ( ( ph /\ Y = Z ) -> ( X .x. Y ) = ( X .x. Z ) ) |
| 16 |
13 15
|
impbida |
|- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |