Step |
Hyp |
Ref |
Expression |
1 |
|
domncanOLD.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domncanOLD.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domncanOLD.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
domncanOLD.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
5 |
|
domncanOLD.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
domncanOLD.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
domnlcanbOLD.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → 𝑌 ∈ 𝐵 ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → 𝑍 ∈ 𝐵 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → 𝑅 ∈ Domn ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
13 |
1 2 3 8 9 10 11 12
|
domnlcan |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) → 𝑌 = 𝑍 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝑌 = 𝑍 ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
16 |
13 15
|
impbida |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ↔ 𝑌 = 𝑍 ) ) |