| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domncanOLD.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
domncanOLD.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
domncanOLD.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
domncanOLD.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 5 |
|
domncanOLD.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
domncanOLD.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 7 |
|
idomrcanOLD.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 8 |
|
idomrcanOLD.2 |
⊢ ( 𝜑 → ( 𝑌 · 𝑋 ) = ( 𝑍 · 𝑋 ) ) |
| 9 |
7
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 10 |
|
df-idom |
⊢ IDomn = ( CRing ∩ Domn ) |
| 11 |
7 10
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( CRing ∩ Domn ) ) |
| 12 |
11
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 13 |
4
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 14 |
1 3
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 15 |
12 13 5 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 16 |
1 3
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) ) |
| 17 |
12 13 6 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) ) |
| 18 |
8 15 17
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
| 19 |
1 2 3 4 5 6 9 18
|
domnlcan |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |