Metamath Proof Explorer


Theorem idomrcanOLD

Description: Obsolete version of idomrcan as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses domncanOLD.b B = Base R
domncanOLD.1 0 ˙ = 0 R
domncanOLD.m · ˙ = R
domncanOLD.x φ X B 0 ˙
domncanOLD.y φ Y B
domncanOLD.z φ Z B
idomrcanOLD.r φ R IDomn
idomrcanOLD.2 φ Y · ˙ X = Z · ˙ X
Assertion idomrcanOLD φ Y = Z

Proof

Step Hyp Ref Expression
1 domncanOLD.b B = Base R
2 domncanOLD.1 0 ˙ = 0 R
3 domncanOLD.m · ˙ = R
4 domncanOLD.x φ X B 0 ˙
5 domncanOLD.y φ Y B
6 domncanOLD.z φ Z B
7 idomrcanOLD.r φ R IDomn
8 idomrcanOLD.2 φ Y · ˙ X = Z · ˙ X
9 7 idomdomd φ R Domn
10 df-idom IDomn = CRing Domn
11 7 10 eleqtrdi φ R CRing Domn
12 11 elin1d φ R CRing
13 4 eldifad φ X B
14 1 3 crngcom R CRing X B Y B X · ˙ Y = Y · ˙ X
15 12 13 5 14 syl3anc φ X · ˙ Y = Y · ˙ X
16 1 3 crngcom R CRing X B Z B X · ˙ Z = Z · ˙ X
17 12 13 6 16 syl3anc φ X · ˙ Z = Z · ˙ X
18 8 15 17 3eqtr4d φ X · ˙ Y = X · ˙ Z
19 1 2 3 4 5 6 9 18 domnlcan φ Y = Z