Metamath Proof Explorer


Theorem idomrcanOLD

Description: Obsolete version of idomrcan as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses domncanOLD.b
|- B = ( Base ` R )
domncanOLD.1
|- .0. = ( 0g ` R )
domncanOLD.m
|- .x. = ( .r ` R )
domncanOLD.x
|- ( ph -> X e. ( B \ { .0. } ) )
domncanOLD.y
|- ( ph -> Y e. B )
domncanOLD.z
|- ( ph -> Z e. B )
idomrcanOLD.r
|- ( ph -> R e. IDomn )
idomrcanOLD.2
|- ( ph -> ( Y .x. X ) = ( Z .x. X ) )
Assertion idomrcanOLD
|- ( ph -> Y = Z )

Proof

Step Hyp Ref Expression
1 domncanOLD.b
 |-  B = ( Base ` R )
2 domncanOLD.1
 |-  .0. = ( 0g ` R )
3 domncanOLD.m
 |-  .x. = ( .r ` R )
4 domncanOLD.x
 |-  ( ph -> X e. ( B \ { .0. } ) )
5 domncanOLD.y
 |-  ( ph -> Y e. B )
6 domncanOLD.z
 |-  ( ph -> Z e. B )
7 idomrcanOLD.r
 |-  ( ph -> R e. IDomn )
8 idomrcanOLD.2
 |-  ( ph -> ( Y .x. X ) = ( Z .x. X ) )
9 7 idomdomd
 |-  ( ph -> R e. Domn )
10 df-idom
 |-  IDomn = ( CRing i^i Domn )
11 7 10 eleqtrdi
 |-  ( ph -> R e. ( CRing i^i Domn ) )
12 11 elin1d
 |-  ( ph -> R e. CRing )
13 4 eldifad
 |-  ( ph -> X e. B )
14 1 3 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )
15 12 13 5 14 syl3anc
 |-  ( ph -> ( X .x. Y ) = ( Y .x. X ) )
16 1 3 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Z e. B ) -> ( X .x. Z ) = ( Z .x. X ) )
17 12 13 6 16 syl3anc
 |-  ( ph -> ( X .x. Z ) = ( Z .x. X ) )
18 8 15 17 3eqtr4d
 |-  ( ph -> ( X .x. Y ) = ( X .x. Z ) )
19 1 2 3 4 5 6 9 18 domnlcan
 |-  ( ph -> Y = Z )