Metamath Proof Explorer


Theorem domnlcan

Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses domncan.b B=BaseR
domncan.1 0˙=0R
domncan.m ·˙=R
domncan.x φXB0˙
domncan.y φYB
domncan.z φZB
domnlcan.r φRDomn
domnlcan.2 φX·˙Y=X·˙Z
Assertion domnlcan φY=Z

Proof

Step Hyp Ref Expression
1 domncan.b B=BaseR
2 domncan.1 0˙=0R
3 domncan.m ·˙=R
4 domncan.x φXB0˙
5 domncan.y φYB
6 domncan.z φZB
7 domnlcan.r φRDomn
8 domnlcan.2 φX·˙Y=X·˙Z
9 oveq1 a=Xa·˙b=X·˙b
10 oveq1 a=Xa·˙c=X·˙c
11 9 10 eqeq12d a=Xa·˙b=a·˙cX·˙b=X·˙c
12 11 imbi1d a=Xa·˙b=a·˙cb=cX·˙b=X·˙cb=c
13 oveq2 b=YX·˙b=X·˙Y
14 13 eqeq1d b=YX·˙b=X·˙cX·˙Y=X·˙c
15 eqeq1 b=Yb=cY=c
16 14 15 imbi12d b=YX·˙b=X·˙cb=cX·˙Y=X·˙cY=c
17 oveq2 c=ZX·˙c=X·˙Z
18 17 eqeq2d c=ZX·˙Y=X·˙cX·˙Y=X·˙Z
19 eqeq2 c=ZY=cY=Z
20 18 19 imbi12d c=ZX·˙Y=X·˙cY=cX·˙Y=X·˙ZY=Z
21 1 2 3 isdomn4 RDomnRNzRingaB0˙bBcBa·˙b=a·˙cb=c
22 7 21 sylib φRNzRingaB0˙bBcBa·˙b=a·˙cb=c
23 22 simprd φaB0˙bBcBa·˙b=a·˙cb=c
24 12 16 20 23 4 5 6 rspc3dv φX·˙Y=X·˙ZY=Z
25 8 24 mpd φY=Z