| Step |
Hyp |
Ref |
Expression |
| 1 |
|
urpropd.b |
|- B = ( Base ` S ) |
| 2 |
|
urpropd.s |
|- ( ph -> S e. V ) |
| 3 |
|
urpropd.t |
|- ( ph -> T e. W ) |
| 4 |
|
urpropd.1 |
|- ( ph -> B = ( Base ` T ) ) |
| 5 |
|
urpropd.2 |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ e e. B ) -> B = ( Base ` T ) ) |
| 7 |
5
|
anasss |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) ) |
| 8 |
7
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) ) |
| 9 |
8
|
ad2antrr |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> A. x e. B A. y e. B ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) ) |
| 10 |
|
oveq1 |
|- ( x = e -> ( x ( .r ` S ) y ) = ( e ( .r ` S ) y ) ) |
| 11 |
|
oveq1 |
|- ( x = e -> ( x ( .r ` T ) y ) = ( e ( .r ` T ) y ) ) |
| 12 |
10 11
|
eqeq12d |
|- ( x = e -> ( ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) <-> ( e ( .r ` S ) y ) = ( e ( .r ` T ) y ) ) ) |
| 13 |
|
oveq2 |
|- ( y = p -> ( e ( .r ` S ) y ) = ( e ( .r ` S ) p ) ) |
| 14 |
|
oveq2 |
|- ( y = p -> ( e ( .r ` T ) y ) = ( e ( .r ` T ) p ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( y = p -> ( ( e ( .r ` S ) y ) = ( e ( .r ` T ) y ) <-> ( e ( .r ` S ) p ) = ( e ( .r ` T ) p ) ) ) |
| 16 |
|
simplr |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> e e. B ) |
| 17 |
|
eqidd |
|- ( ( ( ( ph /\ e e. B ) /\ p e. B ) /\ x = e ) -> B = B ) |
| 18 |
|
simpr |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> p e. B ) |
| 19 |
12 15 16 17 18
|
rspc2vd |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( A. x e. B A. y e. B ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) -> ( e ( .r ` S ) p ) = ( e ( .r ` T ) p ) ) ) |
| 20 |
9 19
|
mpd |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( e ( .r ` S ) p ) = ( e ( .r ` T ) p ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( ( e ( .r ` S ) p ) = p <-> ( e ( .r ` T ) p ) = p ) ) |
| 22 |
|
oveq1 |
|- ( x = p -> ( x ( .r ` S ) y ) = ( p ( .r ` S ) y ) ) |
| 23 |
|
oveq1 |
|- ( x = p -> ( x ( .r ` T ) y ) = ( p ( .r ` T ) y ) ) |
| 24 |
22 23
|
eqeq12d |
|- ( x = p -> ( ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) <-> ( p ( .r ` S ) y ) = ( p ( .r ` T ) y ) ) ) |
| 25 |
|
oveq2 |
|- ( y = e -> ( p ( .r ` S ) y ) = ( p ( .r ` S ) e ) ) |
| 26 |
|
oveq2 |
|- ( y = e -> ( p ( .r ` T ) y ) = ( p ( .r ` T ) e ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( y = e -> ( ( p ( .r ` S ) y ) = ( p ( .r ` T ) y ) <-> ( p ( .r ` S ) e ) = ( p ( .r ` T ) e ) ) ) |
| 28 |
|
eqidd |
|- ( ( ( ( ph /\ e e. B ) /\ p e. B ) /\ x = p ) -> B = B ) |
| 29 |
24 27 18 28 16
|
rspc2vd |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( A. x e. B A. y e. B ( x ( .r ` S ) y ) = ( x ( .r ` T ) y ) -> ( p ( .r ` S ) e ) = ( p ( .r ` T ) e ) ) ) |
| 30 |
9 29
|
mpd |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( p ( .r ` S ) e ) = ( p ( .r ` T ) e ) ) |
| 31 |
30
|
eqeq1d |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( ( p ( .r ` S ) e ) = p <-> ( p ( .r ` T ) e ) = p ) ) |
| 32 |
21 31
|
anbi12d |
|- ( ( ( ph /\ e e. B ) /\ p e. B ) -> ( ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) <-> ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) |
| 33 |
6 32
|
raleqbidva |
|- ( ( ph /\ e e. B ) -> ( A. p e. B ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) <-> A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) |
| 34 |
33
|
pm5.32da |
|- ( ph -> ( ( e e. B /\ A. p e. B ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) ) <-> ( e e. B /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) ) |
| 35 |
4
|
eleq2d |
|- ( ph -> ( e e. B <-> e e. ( Base ` T ) ) ) |
| 36 |
35
|
anbi1d |
|- ( ph -> ( ( e e. B /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) <-> ( e e. ( Base ` T ) /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) ) |
| 37 |
34 36
|
bitrd |
|- ( ph -> ( ( e e. B /\ A. p e. B ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) ) <-> ( e e. ( Base ` T ) /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) ) |
| 38 |
37
|
iotabidv |
|- ( ph -> ( iota e ( e e. B /\ A. p e. B ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) ) ) = ( iota e ( e e. ( Base ` T ) /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) ) |
| 39 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 40 |
39 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` S ) ) |
| 41 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 42 |
39 41
|
mgpplusg |
|- ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) |
| 43 |
|
eqid |
|- ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) ) |
| 44 |
40 42 43
|
grpidval |
|- ( 0g ` ( mulGrp ` S ) ) = ( iota e ( e e. B /\ A. p e. B ( ( e ( .r ` S ) p ) = p /\ ( p ( .r ` S ) e ) = p ) ) ) |
| 45 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
| 46 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 47 |
45 46
|
mgpbas |
|- ( Base ` T ) = ( Base ` ( mulGrp ` T ) ) |
| 48 |
|
eqid |
|- ( .r ` T ) = ( .r ` T ) |
| 49 |
45 48
|
mgpplusg |
|- ( .r ` T ) = ( +g ` ( mulGrp ` T ) ) |
| 50 |
|
eqid |
|- ( 0g ` ( mulGrp ` T ) ) = ( 0g ` ( mulGrp ` T ) ) |
| 51 |
47 49 50
|
grpidval |
|- ( 0g ` ( mulGrp ` T ) ) = ( iota e ( e e. ( Base ` T ) /\ A. p e. ( Base ` T ) ( ( e ( .r ` T ) p ) = p /\ ( p ( .r ` T ) e ) = p ) ) ) |
| 52 |
38 44 51
|
3eqtr4g |
|- ( ph -> ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` T ) ) ) |
| 53 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 54 |
39 53
|
ringidval |
|- ( 1r ` S ) = ( 0g ` ( mulGrp ` S ) ) |
| 55 |
|
eqid |
|- ( 1r ` T ) = ( 1r ` T ) |
| 56 |
45 55
|
ringidval |
|- ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) |
| 57 |
52 54 56
|
3eqtr4g |
|- ( ph -> ( 1r ` S ) = ( 1r ` T ) ) |