Description: Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | urpropd.b | |
|
urpropd.s | |
||
urpropd.t | |
||
urpropd.1 | |
||
urpropd.2 | |
||
Assertion | urpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | urpropd.b | |
|
2 | urpropd.s | |
|
3 | urpropd.t | |
|
4 | urpropd.1 | |
|
5 | urpropd.2 | |
|
6 | 4 | adantr | |
7 | 5 | anasss | |
8 | 7 | ralrimivva | |
9 | 8 | ad2antrr | |
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq2 | |
|
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | simplr | |
|
17 | eqidd | |
|
18 | simpr | |
|
19 | 12 15 16 17 18 | rspc2vd | |
20 | 9 19 | mpd | |
21 | 20 | eqeq1d | |
22 | oveq1 | |
|
23 | oveq1 | |
|
24 | 22 23 | eqeq12d | |
25 | oveq2 | |
|
26 | oveq2 | |
|
27 | 25 26 | eqeq12d | |
28 | eqidd | |
|
29 | 24 27 18 28 16 | rspc2vd | |
30 | 9 29 | mpd | |
31 | 30 | eqeq1d | |
32 | 21 31 | anbi12d | |
33 | 6 32 | raleqbidva | |
34 | 33 | pm5.32da | |
35 | 4 | eleq2d | |
36 | 35 | anbi1d | |
37 | 34 36 | bitrd | |
38 | 37 | iotabidv | |
39 | eqid | |
|
40 | 39 1 | mgpbas | |
41 | eqid | |
|
42 | 39 41 | mgpplusg | |
43 | eqid | |
|
44 | 40 42 43 | grpidval | |
45 | eqid | |
|
46 | eqid | |
|
47 | 45 46 | mgpbas | |
48 | eqid | |
|
49 | 45 48 | mgpplusg | |
50 | eqid | |
|
51 | 47 49 50 | grpidval | |
52 | 38 44 51 | 3eqtr4g | |
53 | eqid | |
|
54 | 39 53 | ringidval | |
55 | eqid | |
|
56 | 45 55 | ringidval | |
57 | 52 54 56 | 3eqtr4g | |