| Step |
Hyp |
Ref |
Expression |
| 1 |
|
urpropd.b |
|
| 2 |
|
urpropd.s |
|
| 3 |
|
urpropd.t |
|
| 4 |
|
urpropd.1 |
|
| 5 |
|
urpropd.2 |
|
| 6 |
4
|
adantr |
|
| 7 |
5
|
anasss |
|
| 8 |
7
|
ralrimivva |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
oveq1 |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
|
simplr |
|
| 17 |
|
eqidd |
|
| 18 |
|
simpr |
|
| 19 |
12 15 16 17 18
|
rspc2vd |
|
| 20 |
9 19
|
mpd |
|
| 21 |
20
|
eqeq1d |
|
| 22 |
|
oveq1 |
|
| 23 |
|
oveq1 |
|
| 24 |
22 23
|
eqeq12d |
|
| 25 |
|
oveq2 |
|
| 26 |
|
oveq2 |
|
| 27 |
25 26
|
eqeq12d |
|
| 28 |
|
eqidd |
|
| 29 |
24 27 18 28 16
|
rspc2vd |
|
| 30 |
9 29
|
mpd |
|
| 31 |
30
|
eqeq1d |
|
| 32 |
21 31
|
anbi12d |
|
| 33 |
6 32
|
raleqbidva |
|
| 34 |
33
|
pm5.32da |
|
| 35 |
4
|
eleq2d |
|
| 36 |
35
|
anbi1d |
|
| 37 |
34 36
|
bitrd |
|
| 38 |
37
|
iotabidv |
|
| 39 |
|
eqid |
|
| 40 |
39 1
|
mgpbas |
|
| 41 |
|
eqid |
|
| 42 |
39 41
|
mgpplusg |
|
| 43 |
|
eqid |
|
| 44 |
40 42 43
|
grpidval |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
45 46
|
mgpbas |
|
| 48 |
|
eqid |
|
| 49 |
45 48
|
mgpplusg |
|
| 50 |
|
eqid |
|
| 51 |
47 49 50
|
grpidval |
|
| 52 |
38 44 51
|
3eqtr4g |
|
| 53 |
|
eqid |
|
| 54 |
39 53
|
ringidval |
|
| 55 |
|
eqid |
|
| 56 |
45 55
|
ringidval |
|
| 57 |
52 54 56
|
3eqtr4g |
|