| Step |
Hyp |
Ref |
Expression |
| 1 |
|
urpropd.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
urpropd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
urpropd.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) |
| 4 |
|
urpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑇 ) ) |
| 5 |
|
urpropd.2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑇 ) ) |
| 7 |
5
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 8 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑒 → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑆 ) 𝑦 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑒 → ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑒 → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ↔ ( 𝑒 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑦 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑝 → ( 𝑒 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑦 = 𝑝 → ( 𝑒 ( .r ‘ 𝑇 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = 𝑝 → ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑦 ) ↔ ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) ) ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑒 ∈ 𝐵 ) |
| 17 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑥 = 𝑒 ) → 𝐵 = 𝐵 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 19 |
12 15 16 17 18
|
rspc2vd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) → ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) ) ) |
| 20 |
9 19
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ↔ ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑝 → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑆 ) 𝑦 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = 𝑝 → ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑦 ) ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ↔ ( 𝑝 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑦 ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑒 → ( 𝑝 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑦 = 𝑒 → ( 𝑝 ( .r ‘ 𝑇 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑦 = 𝑒 → ( ( 𝑝 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑦 ) ↔ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) ) ) |
| 28 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑥 = 𝑝 ) → 𝐵 = 𝐵 ) |
| 29 |
24 27 18 28 16
|
rspc2vd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) → ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) ) ) |
| 30 |
9 29
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) ) |
| 31 |
30
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ↔ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) |
| 32 |
21 31
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ↔ ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) |
| 33 |
6 32
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐵 ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ↔ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) |
| 34 |
33
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ) ↔ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) ) |
| 35 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑒 ∈ 𝐵 ↔ 𝑒 ∈ ( Base ‘ 𝑇 ) ) ) |
| 36 |
35
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ↔ ( 𝑒 ∈ ( Base ‘ 𝑇 ) ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) ) |
| 37 |
34 36
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ) ↔ ( 𝑒 ∈ ( Base ‘ 𝑇 ) ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) ) |
| 38 |
37
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ) ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑇 ) ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) ) |
| 39 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 40 |
39 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 41 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 42 |
39 41
|
mgpplusg |
⊢ ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 44 |
40 42 43
|
grpidval |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( ( 𝑒 ( .r ‘ 𝑆 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑆 ) 𝑒 ) = 𝑝 ) ) ) |
| 45 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 47 |
45 46
|
mgpbas |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ ( mulGrp ‘ 𝑇 ) ) |
| 48 |
|
eqid |
⊢ ( .r ‘ 𝑇 ) = ( .r ‘ 𝑇 ) |
| 49 |
45 48
|
mgpplusg |
⊢ ( .r ‘ 𝑇 ) = ( +g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 51 |
47 49 50
|
grpidval |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑇 ) ∧ ∀ 𝑝 ∈ ( Base ‘ 𝑇 ) ( ( 𝑒 ( .r ‘ 𝑇 ) 𝑝 ) = 𝑝 ∧ ( 𝑝 ( .r ‘ 𝑇 ) 𝑒 ) = 𝑝 ) ) ) |
| 52 |
38 44 51
|
3eqtr4g |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) ) |
| 53 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 54 |
39 53
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 55 |
|
eqid |
⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) |
| 56 |
45 55
|
ringidval |
⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 57 |
52 54 56
|
3eqtr4g |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑇 ) ) |