Step |
Hyp |
Ref |
Expression |
1 |
|
rabeqsnd.0 |
|- ( x = B -> ( ps <-> ch ) ) |
2 |
|
rabeqsnd.1 |
|- ( ph -> B e. A ) |
3 |
|
rabeqsnd.2 |
|- ( ph -> ch ) |
4 |
|
rabeqsnd.3 |
|- ( ( ( ph /\ x e. A ) /\ ps ) -> x = B ) |
5 |
4
|
expl |
|- ( ph -> ( ( x e. A /\ ps ) -> x = B ) ) |
6 |
5
|
alrimiv |
|- ( ph -> A. x ( ( x e. A /\ ps ) -> x = B ) ) |
7 |
2 3
|
jca |
|- ( ph -> ( B e. A /\ ch ) ) |
8 |
7
|
a1d |
|- ( ph -> ( x = B -> ( B e. A /\ ch ) ) ) |
9 |
8
|
alrimiv |
|- ( ph -> A. x ( x = B -> ( B e. A /\ ch ) ) ) |
10 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
11 |
10 1
|
anbi12d |
|- ( x = B -> ( ( x e. A /\ ps ) <-> ( B e. A /\ ch ) ) ) |
12 |
11
|
pm5.74i |
|- ( ( x = B -> ( x e. A /\ ps ) ) <-> ( x = B -> ( B e. A /\ ch ) ) ) |
13 |
12
|
albii |
|- ( A. x ( x = B -> ( x e. A /\ ps ) ) <-> A. x ( x = B -> ( B e. A /\ ch ) ) ) |
14 |
9 13
|
sylibr |
|- ( ph -> A. x ( x = B -> ( x e. A /\ ps ) ) ) |
15 |
6 14
|
jca |
|- ( ph -> ( A. x ( ( x e. A /\ ps ) -> x = B ) /\ A. x ( x = B -> ( x e. A /\ ps ) ) ) ) |
16 |
|
albiim |
|- ( A. x ( ( x e. A /\ ps ) <-> x = B ) <-> ( A. x ( ( x e. A /\ ps ) -> x = B ) /\ A. x ( x = B -> ( x e. A /\ ps ) ) ) ) |
17 |
15 16
|
sylibr |
|- ( ph -> A. x ( ( x e. A /\ ps ) <-> x = B ) ) |
18 |
|
rabeqsn |
|- ( { x e. A | ps } = { B } <-> A. x ( ( x e. A /\ ps ) <-> x = B ) ) |
19 |
17 18
|
sylibr |
|- ( ph -> { x e. A | ps } = { B } ) |