Metamath Proof Explorer


Theorem ply1dg1rt

Description: Express the root - B / A of a polynomial A x. X + B of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg1rt.p P = Poly 1 R
ply1dg1rt.u U = Base P
ply1dg1rt.o O = eval 1 R
ply1dg1rt.d D = deg 1 R
ply1dg1rt.0 0 ˙ = 0 R
ply1dg1rt.r φ R Field
ply1dg1rt.g φ G U
ply1dg1rt.1 φ D G = 1
ply1dg1rt.x N = inv g R
ply1dg1rt.m × ˙ = / r R
ply1dg1rt.c C = coe 1 G
ply1dg1rt.a A = C 1
ply1dg1rt.b B = C 0
ply1dg1rt.z Z = N B × ˙ A
Assertion ply1dg1rt φ O G -1 0 ˙ = Z

Proof

Step Hyp Ref Expression
1 ply1dg1rt.p P = Poly 1 R
2 ply1dg1rt.u U = Base P
3 ply1dg1rt.o O = eval 1 R
4 ply1dg1rt.d D = deg 1 R
5 ply1dg1rt.0 0 ˙ = 0 R
6 ply1dg1rt.r φ R Field
7 ply1dg1rt.g φ G U
8 ply1dg1rt.1 φ D G = 1
9 ply1dg1rt.x N = inv g R
10 ply1dg1rt.m × ˙ = / r R
11 ply1dg1rt.c C = coe 1 G
12 ply1dg1rt.a A = C 1
13 ply1dg1rt.b B = C 0
14 ply1dg1rt.z Z = N B × ˙ A
15 6 fldcrngd φ R CRing
16 eqid Base R = Base R
17 3 1 2 15 16 7 evl1fvf φ O G : Base R Base R
18 17 ffnd φ O G Fn Base R
19 fniniseg2 O G Fn Base R O G -1 0 ˙ = x Base R | O G x = 0 ˙
20 18 19 syl φ O G -1 0 ˙ = x Base R | O G x = 0 ˙
21 fveqeq2 x = Z O G x = 0 ˙ O G Z = 0 ˙
22 15 crngringd φ R Ring
23 15 crnggrpd φ R Grp
24 0nn0 0 0
25 11 2 1 16 coe1fvalcl G U 0 0 C 0 Base R
26 7 24 25 sylancl φ C 0 Base R
27 13 26 eqeltrid φ B Base R
28 16 9 23 27 grpinvcld φ N B Base R
29 6 flddrngd φ R DivRing
30 1nn0 1 0
31 11 2 1 16 coe1fvalcl G U 1 0 C 1 Base R
32 7 30 31 sylancl φ C 1 Base R
33 8 fveq2d φ C D G = C 1
34 8 30 eqeltrdi φ D G 0
35 eqid 0 P = 0 P
36 4 1 35 2 deg1nn0clb R Ring G U G 0 P D G 0
37 36 biimpar R Ring G U D G 0 G 0 P
38 22 7 34 37 syl21anc φ G 0 P
39 4 1 35 2 5 11 deg1ldg R Ring G U G 0 P C D G 0 ˙
40 22 7 38 39 syl3anc φ C D G 0 ˙
41 33 40 eqnetrrd φ C 1 0 ˙
42 eqid Unit R = Unit R
43 16 42 5 drngunit R DivRing C 1 Unit R C 1 Base R C 1 0 ˙
44 43 biimpar R DivRing C 1 Base R C 1 0 ˙ C 1 Unit R
45 29 32 41 44 syl12anc φ C 1 Unit R
46 12 45 eqeltrid φ A Unit R
47 16 42 10 dvrcl R Ring N B Base R A Unit R N B × ˙ A Base R
48 22 28 46 47 syl3anc φ N B × ˙ A Base R
49 14 48 eqeltrid φ Z Base R
50 eqidd φ Z = Z
51 eqeq1 x = Z x = Z Z = Z
52 51 imbi1d x = Z x = Z O G Z = 0 ˙ Z = Z O G Z = 0 ˙
53 fveq2 x = Z O G x = O G Z
54 53 adantl φ x Base R x = Z O G x = O G Z
55 23 adantr φ x Base R R Grp
56 eqid R = R
57 22 adantr φ x Base R R Ring
58 12 32 eqeltrid φ A Base R
59 58 adantr φ x Base R A Base R
60 simpr φ x Base R x Base R
61 16 56 57 59 60 ringcld φ x Base R A R x Base R
62 28 adantr φ x Base R N B Base R
63 27 adantr φ x Base R B Base R
64 eqid + R = + R
65 16 64 grprcan R Grp A R x Base R N B Base R B Base R A R x + R B = N B + R B A R x = N B
66 55 61 62 63 65 syl13anc φ x Base R A R x + R B = N B + R B A R x = N B
67 15 adantr φ x Base R R CRing
68 48 adantr φ x Base R N B × ˙ A Base R
69 16 56 67 68 59 crngcomd φ x Base R N B × ˙ A R A = A R N B × ˙ A
70 46 adantr φ x Base R A Unit R
71 16 42 10 56 dvrcan1 R Ring N B Base R A Unit R N B × ˙ A R A = N B
72 57 62 70 71 syl3anc φ x Base R N B × ˙ A R A = N B
73 69 72 eqtr3d φ x Base R A R N B × ˙ A = N B
74 73 eqeq2d φ x Base R A R x = A R N B × ˙ A A R x = N B
75 drngdomn R DivRing R Domn
76 29 75 syl φ R Domn
77 domnnzr R Domn R NzRing
78 76 77 syl φ R NzRing
79 78 adantr φ x Base R R NzRing
80 42 5 79 70 unitnz φ x Base R A 0 ˙
81 59 80 eldifsnd φ x Base R A Base R 0 ˙
82 76 adantr φ x Base R R Domn
83 16 5 56 81 60 68 82 domnlcanb φ x Base R A R x = A R N B × ˙ A x = N B × ˙ A
84 66 74 83 3bitr2rd φ x Base R x = N B × ˙ A A R x + R B = N B + R B
85 16 64 5 9 55 63 grplinvd φ x Base R N B + R B = 0 ˙
86 85 eqeq2d φ x Base R A R x + R B = N B + R B A R x + R B = 0 ˙
87 84 86 bitr2d φ x Base R A R x + R B = 0 ˙ x = N B × ˙ A
88 7 adantr φ x Base R G U
89 8 adantr φ x Base R D G = 1
90 1 3 16 2 56 64 11 4 12 13 67 88 89 60 evl1deg1 φ x Base R O G x = A R x + R B
91 90 eqeq1d φ x Base R O G x = 0 ˙ A R x + R B = 0 ˙
92 14 eqeq2i x = Z x = N B × ˙ A
93 92 a1i φ x Base R x = Z x = N B × ˙ A
94 87 91 93 3bitr4d φ x Base R O G x = 0 ˙ x = Z
95 94 biimpar φ x Base R x = Z O G x = 0 ˙
96 54 95 eqtr3d φ x Base R x = Z O G Z = 0 ˙
97 96 ex φ x Base R x = Z O G Z = 0 ˙
98 97 ralrimiva φ x Base R x = Z O G Z = 0 ˙
99 52 98 49 rspcdva φ Z = Z O G Z = 0 ˙
100 50 99 mpd φ O G Z = 0 ˙
101 94 biimpa φ x Base R O G x = 0 ˙ x = Z
102 21 49 100 101 rabeqsnd φ x Base R | O G x = 0 ˙ = Z
103 20 102 eqtrd φ O G -1 0 ˙ = Z