| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg1rt.p |
|
| 2 |
|
ply1dg1rt.u |
|
| 3 |
|
ply1dg1rt.o |
|
| 4 |
|
ply1dg1rt.d |
|
| 5 |
|
ply1dg1rt.0 |
|
| 6 |
|
ply1dg1rt.r |
|
| 7 |
|
ply1dg1rt.g |
|
| 8 |
|
ply1dg1rt.1 |
|
| 9 |
|
ply1dg1rt.x |
|
| 10 |
|
ply1dg1rt.m |
|
| 11 |
|
ply1dg1rt.c |
|
| 12 |
|
ply1dg1rt.a |
|
| 13 |
|
ply1dg1rt.b |
|
| 14 |
|
ply1dg1rt.z |
|
| 15 |
6
|
fldcrngd |
|
| 16 |
|
eqid |
|
| 17 |
3 1 2 15 16 7
|
evl1fvf |
|
| 18 |
17
|
ffnd |
|
| 19 |
|
fniniseg2 |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
fveqeq2 |
|
| 22 |
15
|
crngringd |
|
| 23 |
15
|
crnggrpd |
|
| 24 |
|
0nn0 |
|
| 25 |
11 2 1 16
|
coe1fvalcl |
|
| 26 |
7 24 25
|
sylancl |
|
| 27 |
13 26
|
eqeltrid |
|
| 28 |
16 9 23 27
|
grpinvcld |
|
| 29 |
6
|
flddrngd |
|
| 30 |
|
1nn0 |
|
| 31 |
11 2 1 16
|
coe1fvalcl |
|
| 32 |
7 30 31
|
sylancl |
|
| 33 |
8
|
fveq2d |
|
| 34 |
8 30
|
eqeltrdi |
|
| 35 |
|
eqid |
|
| 36 |
4 1 35 2
|
deg1nn0clb |
|
| 37 |
36
|
biimpar |
|
| 38 |
22 7 34 37
|
syl21anc |
|
| 39 |
4 1 35 2 5 11
|
deg1ldg |
|
| 40 |
22 7 38 39
|
syl3anc |
|
| 41 |
33 40
|
eqnetrrd |
|
| 42 |
|
eqid |
|
| 43 |
16 42 5
|
drngunit |
|
| 44 |
43
|
biimpar |
|
| 45 |
29 32 41 44
|
syl12anc |
|
| 46 |
12 45
|
eqeltrid |
|
| 47 |
16 42 10
|
dvrcl |
|
| 48 |
22 28 46 47
|
syl3anc |
|
| 49 |
14 48
|
eqeltrid |
|
| 50 |
|
eqidd |
|
| 51 |
|
eqeq1 |
|
| 52 |
51
|
imbi1d |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
adantl |
|
| 55 |
23
|
adantr |
|
| 56 |
|
eqid |
|
| 57 |
22
|
adantr |
|
| 58 |
12 32
|
eqeltrid |
|
| 59 |
58
|
adantr |
|
| 60 |
|
simpr |
|
| 61 |
16 56 57 59 60
|
ringcld |
|
| 62 |
28
|
adantr |
|
| 63 |
27
|
adantr |
|
| 64 |
|
eqid |
|
| 65 |
16 64
|
grprcan |
|
| 66 |
55 61 62 63 65
|
syl13anc |
|
| 67 |
15
|
adantr |
|
| 68 |
48
|
adantr |
|
| 69 |
16 56 67 68 59
|
crngcomd |
|
| 70 |
46
|
adantr |
|
| 71 |
16 42 10 56
|
dvrcan1 |
|
| 72 |
57 62 70 71
|
syl3anc |
|
| 73 |
69 72
|
eqtr3d |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
|
drngdomn |
|
| 76 |
29 75
|
syl |
|
| 77 |
|
domnnzr |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
adantr |
|
| 80 |
42 5 79 70
|
unitnz |
|
| 81 |
59 80
|
eldifsnd |
|
| 82 |
76
|
adantr |
|
| 83 |
16 5 56 81 60 68 82
|
domnlcanb |
|
| 84 |
66 74 83
|
3bitr2rd |
|
| 85 |
16 64 5 9 55 63
|
grplinvd |
|
| 86 |
85
|
eqeq2d |
|
| 87 |
84 86
|
bitr2d |
|
| 88 |
7
|
adantr |
|
| 89 |
8
|
adantr |
|
| 90 |
1 3 16 2 56 64 11 4 12 13 67 88 89 60
|
evl1deg1 |
|
| 91 |
90
|
eqeq1d |
|
| 92 |
14
|
eqeq2i |
|
| 93 |
92
|
a1i |
|
| 94 |
87 91 93
|
3bitr4d |
|
| 95 |
94
|
biimpar |
|
| 96 |
54 95
|
eqtr3d |
|
| 97 |
96
|
ex |
|
| 98 |
97
|
ralrimiva |
|
| 99 |
52 98 49
|
rspcdva |
|
| 100 |
50 99
|
mpd |
|
| 101 |
94
|
biimpa |
|
| 102 |
21 49 100 101
|
rabeqsnd |
|
| 103 |
20 102
|
eqtrd |
|