Metamath Proof Explorer


Theorem ply1dg1rtn0

Description: Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg1rt.p P = Poly 1 R
ply1dg1rt.u U = Base P
ply1dg1rt.o O = eval 1 R
ply1dg1rt.d D = deg 1 R
ply1dg1rt.0 0 ˙ = 0 R
ply1dg1rtn0.r φ R Field
ply1dg1rtn0.g φ G U
ply1dg1rtn0.1 φ D G = 1
Assertion ply1dg1rtn0 φ O G -1 0 ˙

Proof

Step Hyp Ref Expression
1 ply1dg1rt.p P = Poly 1 R
2 ply1dg1rt.u U = Base P
3 ply1dg1rt.o O = eval 1 R
4 ply1dg1rt.d D = deg 1 R
5 ply1dg1rt.0 0 ˙ = 0 R
6 ply1dg1rtn0.r φ R Field
7 ply1dg1rtn0.g φ G U
8 ply1dg1rtn0.1 φ D G = 1
9 ovex inv g R coe 1 G 0 / r R coe 1 G 1 V
10 9 snid inv g R coe 1 G 0 / r R coe 1 G 1 inv g R coe 1 G 0 / r R coe 1 G 1
11 eqid inv g R = inv g R
12 eqid / r R = / r R
13 eqid coe 1 G = coe 1 G
14 eqid coe 1 G 1 = coe 1 G 1
15 eqid coe 1 G 0 = coe 1 G 0
16 eqid inv g R coe 1 G 0 / r R coe 1 G 1 = inv g R coe 1 G 0 / r R coe 1 G 1
17 1 2 3 4 5 6 7 8 11 12 13 14 15 16 ply1dg1rt φ O G -1 0 ˙ = inv g R coe 1 G 0 / r R coe 1 G 1
18 10 17 eleqtrrid φ inv g R coe 1 G 0 / r R coe 1 G 1 O G -1 0 ˙
19 18 ne0d φ O G -1 0 ˙