Metamath Proof Explorer


Theorem ply1mulrtss

Description: The roots of a factor F are also roots of the product of polynomials ( F .x. G ) . (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg1rt.p P = Poly 1 R
ply1dg1rt.u U = Base P
ply1dg1rt.o O = eval 1 R
ply1dg1rt.d D = deg 1 R
ply1dg1rt.0 0 ˙ = 0 R
ply1mulrtss.r φ R CRing
ply1mulrtss.f φ F U
ply1mulrtss.g φ G U
ply1mulrtss.1 · ˙ = P
Assertion ply1mulrtss φ O F -1 0 ˙ O F · ˙ G -1 0 ˙

Proof

Step Hyp Ref Expression
1 ply1dg1rt.p P = Poly 1 R
2 ply1dg1rt.u U = Base P
3 ply1dg1rt.o O = eval 1 R
4 ply1dg1rt.d D = deg 1 R
5 ply1dg1rt.0 0 ˙ = 0 R
6 ply1mulrtss.r φ R CRing
7 ply1mulrtss.f φ F U
8 ply1mulrtss.g φ G U
9 ply1mulrtss.1 · ˙ = P
10 eqid Base R = Base R
11 3 1 2 6 10 7 evl1fvf φ O F : Base R Base R
12 11 ffnd φ O F Fn Base R
13 fniniseg2 O F Fn Base R O F -1 0 ˙ = x Base R | O F x = 0 ˙
14 12 13 syl φ O F -1 0 ˙ = x Base R | O F x = 0 ˙
15 14 eleq2d φ x O F -1 0 ˙ x x Base R | O F x = 0 ˙
16 15 biimpa φ x O F -1 0 ˙ x x Base R | O F x = 0 ˙
17 rabid x x Base R | O F x = 0 ˙ x Base R O F x = 0 ˙
18 16 17 sylib φ x O F -1 0 ˙ x Base R O F x = 0 ˙
19 18 simpld φ x O F -1 0 ˙ x Base R
20 6 adantr φ x O F -1 0 ˙ R CRing
21 7 adantr φ x O F -1 0 ˙ F U
22 18 simprd φ x O F -1 0 ˙ O F x = 0 ˙
23 21 22 jca φ x O F -1 0 ˙ F U O F x = 0 ˙
24 8 adantr φ x O F -1 0 ˙ G U
25 eqidd φ x O F -1 0 ˙ O G x = O G x
26 24 25 jca φ x O F -1 0 ˙ G U O G x = O G x
27 eqid R = R
28 3 1 10 2 20 19 23 26 9 27 evl1muld φ x O F -1 0 ˙ F · ˙ G U O F · ˙ G x = 0 ˙ R O G x
29 28 simprd φ x O F -1 0 ˙ O F · ˙ G x = 0 ˙ R O G x
30 20 crngringd φ x O F -1 0 ˙ R Ring
31 3 1 10 2 20 19 24 fveval1fvcl φ x O F -1 0 ˙ O G x Base R
32 10 27 5 30 31 ringlzd φ x O F -1 0 ˙ 0 ˙ R O G x = 0 ˙
33 29 32 eqtrd φ x O F -1 0 ˙ O F · ˙ G x = 0 ˙
34 19 33 jca φ x O F -1 0 ˙ x Base R O F · ˙ G x = 0 ˙
35 rabid x x Base R | O F · ˙ G x = 0 ˙ x Base R O F · ˙ G x = 0 ˙
36 1 ply1crng R CRing P CRing
37 6 36 syl φ P CRing
38 37 crngringd φ P Ring
39 2 9 38 7 8 ringcld φ F · ˙ G U
40 3 1 2 6 10 39 evl1fvf φ O F · ˙ G : Base R Base R
41 40 ffnd φ O F · ˙ G Fn Base R
42 fniniseg2 O F · ˙ G Fn Base R O F · ˙ G -1 0 ˙ = x Base R | O F · ˙ G x = 0 ˙
43 41 42 syl φ O F · ˙ G -1 0 ˙ = x Base R | O F · ˙ G x = 0 ˙
44 43 eleq2d φ x O F · ˙ G -1 0 ˙ x x Base R | O F · ˙ G x = 0 ˙
45 44 biimpar φ x x Base R | O F · ˙ G x = 0 ˙ x O F · ˙ G -1 0 ˙
46 35 45 sylan2br φ x Base R O F · ˙ G x = 0 ˙ x O F · ˙ G -1 0 ˙
47 34 46 syldan φ x O F -1 0 ˙ x O F · ˙ G -1 0 ˙
48 47 ex φ x O F -1 0 ˙ x O F · ˙ G -1 0 ˙
49 48 ssrdv φ O F -1 0 ˙ O F · ˙ G -1 0 ˙