Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg1rt.p |
|
2 |
|
ply1dg1rt.u |
|
3 |
|
ply1dg1rt.o |
|
4 |
|
ply1dg1rt.d |
|
5 |
|
ply1dg1rt.0 |
|
6 |
|
ply1mulrtss.r |
|
7 |
|
ply1mulrtss.f |
|
8 |
|
ply1mulrtss.g |
|
9 |
|
ply1mulrtss.1 |
|
10 |
|
eqid |
|
11 |
3 1 2 6 10 7
|
evl1fvf |
|
12 |
11
|
ffnd |
|
13 |
|
fniniseg2 |
|
14 |
12 13
|
syl |
|
15 |
14
|
eleq2d |
|
16 |
15
|
biimpa |
|
17 |
|
rabid |
|
18 |
16 17
|
sylib |
|
19 |
18
|
simpld |
|
20 |
6
|
adantr |
|
21 |
7
|
adantr |
|
22 |
18
|
simprd |
|
23 |
21 22
|
jca |
|
24 |
8
|
adantr |
|
25 |
|
eqidd |
|
26 |
24 25
|
jca |
|
27 |
|
eqid |
|
28 |
3 1 10 2 20 19 23 26 9 27
|
evl1muld |
|
29 |
28
|
simprd |
|
30 |
20
|
crngringd |
|
31 |
3 1 10 2 20 19 24
|
fveval1fvcl |
|
32 |
10 27 5 30 31
|
ringlzd |
|
33 |
29 32
|
eqtrd |
|
34 |
19 33
|
jca |
|
35 |
|
rabid |
|
36 |
1
|
ply1crng |
|
37 |
6 36
|
syl |
|
38 |
37
|
crngringd |
|
39 |
2 9 38 7 8
|
ringcld |
|
40 |
3 1 2 6 10 39
|
evl1fvf |
|
41 |
40
|
ffnd |
|
42 |
|
fniniseg2 |
|
43 |
41 42
|
syl |
|
44 |
43
|
eleq2d |
|
45 |
44
|
biimpar |
|
46 |
35 45
|
sylan2br |
|
47 |
34 46
|
syldan |
|
48 |
47
|
ex |
|
49 |
48
|
ssrdv |
|