Metamath Proof Explorer


Theorem ply1dg3rt0irred

Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg3rt0irred.z 0 ˙ = 0 F
ply1dg3rt0irred.o O = eval 1 F
ply1dg3rt0irred.d D = deg 1 F
ply1dg3rt0irred.p P = Poly 1 F
ply1dg3rt0irred.b B = Base P
ply1dg3rt0irred.f φ F Field
ply1dg3rt0irred.q φ Q B
ply1dg3rt0irred.1 φ O Q -1 0 ˙ =
ply1dg3rt0irred.2 φ D Q = 3
Assertion ply1dg3rt0irred φ Q Irred P

Proof

Step Hyp Ref Expression
1 ply1dg3rt0irred.z 0 ˙ = 0 F
2 ply1dg3rt0irred.o O = eval 1 F
3 ply1dg3rt0irred.d D = deg 1 F
4 ply1dg3rt0irred.p P = Poly 1 F
5 ply1dg3rt0irred.b B = Base P
6 ply1dg3rt0irred.f φ F Field
7 ply1dg3rt0irred.q φ Q B
8 ply1dg3rt0irred.1 φ O Q -1 0 ˙ =
9 ply1dg3rt0irred.2 φ D Q = 3
10 3ne0 3 0
11 10 a1i φ 3 0
12 9 11 eqnetrd φ D Q 0
13 eqid algSc P = algSc P
14 eqid Base F = Base F
15 7 5 eleqtrdi φ Q Base P
16 4 13 14 1 6 3 15 ply1unit φ Q Unit P D Q = 0
17 16 necon3bbid φ ¬ Q Unit P D Q 0
18 12 17 mpbird φ ¬ Q Unit P
19 7 18 eldifd φ Q B Unit P
20 6 ad3antrrr φ p B Unit P q B Unit P p P q = Q F Field
21 simpllr φ p B Unit P q B Unit P p P q = Q p B Unit P
22 21 eldifad φ p B Unit P q B Unit P p P q = Q p B
23 22 5 eleqtrdi φ p B Unit P q B Unit P p P q = Q p Base P
24 4 13 14 1 20 3 23 ply1unit φ p B Unit P q B Unit P p P q = Q p Unit P D p = 0
25 24 biimpar φ p B Unit P q B Unit P p P q = Q D p = 0 p Unit P
26 21 eldifbd φ p B Unit P q B Unit P p P q = Q ¬ p Unit P
27 26 adantr φ p B Unit P q B Unit P p P q = Q D p = 0 ¬ p Unit P
28 25 27 pm2.21fal φ p B Unit P q B Unit P p P q = Q D p = 0
29 28 adantlr φ p B Unit P q B Unit P p P q = Q D p 0 1 D p = 0
30 6 fldcrngd φ F CRing
31 30 ad3antrrr φ p B Unit P q B Unit P p P q = Q F CRing
32 simplr φ p B Unit P q B Unit P p P q = Q q B Unit P
33 32 eldifad φ p B Unit P q B Unit P p P q = Q q B
34 eqid P = P
35 4 5 2 3 1 31 22 33 34 ply1mulrtss φ p B Unit P q B Unit P p P q = Q O p -1 0 ˙ O p P q -1 0 ˙
36 simpr φ p B Unit P q B Unit P p P q = Q p P q = Q
37 36 fveq2d φ p B Unit P q B Unit P p P q = Q O p P q = O Q
38 37 cnveqd φ p B Unit P q B Unit P p P q = Q O p P q -1 = O Q -1
39 38 imaeq1d φ p B Unit P q B Unit P p P q = Q O p P q -1 0 ˙ = O Q -1 0 ˙
40 35 39 sseqtrd φ p B Unit P q B Unit P p P q = Q O p -1 0 ˙ O Q -1 0 ˙
41 8 ad3antrrr φ p B Unit P q B Unit P p P q = Q O Q -1 0 ˙ =
42 40 41 sseqtrd φ p B Unit P q B Unit P p P q = Q O p -1 0 ˙
43 ss0 O p -1 0 ˙ O p -1 0 ˙ =
44 42 43 syl φ p B Unit P q B Unit P p P q = Q O p -1 0 ˙ =
45 44 adantr φ p B Unit P q B Unit P p P q = Q D p = 1 O p -1 0 ˙ =
46 20 adantr φ p B Unit P q B Unit P p P q = Q D p = 1 F Field
47 22 adantr φ p B Unit P q B Unit P p P q = Q D p = 1 p B
48 simpr φ p B Unit P q B Unit P p P q = Q D p = 1 D p = 1
49 4 5 2 3 1 46 47 48 ply1dg1rtn0 φ p B Unit P q B Unit P p P q = Q D p = 1 O p -1 0 ˙
50 45 49 pm2.21ddne φ p B Unit P q B Unit P p P q = Q D p = 1
51 50 adantlr φ p B Unit P q B Unit P p P q = Q D p 0 1 D p = 1
52 elpri D p 0 1 D p = 0 D p = 1
53 52 adantl φ p B Unit P q B Unit P p P q = Q D p 0 1 D p = 0 D p = 1
54 29 51 53 mpjaodan φ p B Unit P q B Unit P p P q = Q D p 0 1
55 4 5 2 3 1 31 33 22 34 ply1mulrtss φ p B Unit P q B Unit P p P q = Q O q -1 0 ˙ O q P p -1 0 ˙
56 fldidom F Field F IDomn
57 6 56 syl φ F IDomn
58 4 ply1idom F IDomn P IDomn
59 57 58 syl φ P IDomn
60 59 idomcringd φ P CRing
61 60 ad3antrrr φ p B Unit P q B Unit P p P q = Q P CRing
62 5 34 61 33 22 crngcomd φ p B Unit P q B Unit P p P q = Q q P p = p P q
63 62 36 eqtrd φ p B Unit P q B Unit P p P q = Q q P p = Q
64 63 fveq2d φ p B Unit P q B Unit P p P q = Q O q P p = O Q
65 64 cnveqd φ p B Unit P q B Unit P p P q = Q O q P p -1 = O Q -1
66 65 imaeq1d φ p B Unit P q B Unit P p P q = Q O q P p -1 0 ˙ = O Q -1 0 ˙
67 66 41 eqtrd φ p B Unit P q B Unit P p P q = Q O q P p -1 0 ˙ =
68 55 67 sseqtrd φ p B Unit P q B Unit P p P q = Q O q -1 0 ˙
69 ss0 O q -1 0 ˙ O q -1 0 ˙ =
70 68 69 syl φ p B Unit P q B Unit P p P q = Q O q -1 0 ˙ =
71 70 adantr φ p B Unit P q B Unit P p P q = Q D p = 2 O q -1 0 ˙ =
72 20 adantr φ p B Unit P q B Unit P p P q = Q D p = 2 F Field
73 33 adantr φ p B Unit P q B Unit P p P q = Q D p = 2 q B
74 30 crngringd φ F Ring
75 74 ad3antrrr φ p B Unit P q B Unit P p P q = Q F Ring
76 eqid 0 P = 0 P
77 59 idomdomd φ P Domn
78 77 ad3antrrr φ p B Unit P q B Unit P p P q = Q P Domn
79 3nn0 3 0
80 9 79 eqeltrdi φ D Q 0
81 3 4 76 5 deg1nn0clb F Ring Q B Q 0 P D Q 0
82 81 biimpar F Ring Q B D Q 0 Q 0 P
83 74 7 80 82 syl21anc φ Q 0 P
84 83 ad3antrrr φ p B Unit P q B Unit P p P q = Q Q 0 P
85 36 84 eqnetrd φ p B Unit P q B Unit P p P q = Q p P q 0 P
86 5 34 76 78 22 33 85 domnmuln0rd φ p B Unit P q B Unit P p P q = Q p 0 P q 0 P
87 86 simpld φ p B Unit P q B Unit P p P q = Q p 0 P
88 3 4 76 5 deg1nn0cl F Ring p B p 0 P D p 0
89 75 22 87 88 syl3anc φ p B Unit P q B Unit P p P q = Q D p 0
90 89 nn0cnd φ p B Unit P q B Unit P p P q = Q D p
91 86 simprd φ p B Unit P q B Unit P p P q = Q q 0 P
92 3 4 76 5 deg1nn0cl F Ring q B q 0 P D q 0
93 75 33 91 92 syl3anc φ p B Unit P q B Unit P p P q = Q D q 0
94 93 nn0cnd φ p B Unit P q B Unit P p P q = Q D q
95 36 fveq2d φ p B Unit P q B Unit P p P q = Q D p P q = D Q
96 57 idomdomd φ F Domn
97 96 ad3antrrr φ p B Unit P q B Unit P p P q = Q F Domn
98 3 4 5 34 76 97 22 87 33 91 deg1mul φ p B Unit P q B Unit P p P q = Q D p P q = D p + D q
99 9 ad3antrrr φ p B Unit P q B Unit P p P q = Q D Q = 3
100 95 98 99 3eqtr3d φ p B Unit P q B Unit P p P q = Q D p + D q = 3
101 90 94 100 mvlladdd φ p B Unit P q B Unit P p P q = Q D q = 3 D p
102 101 adantr φ p B Unit P q B Unit P p P q = Q D p = 2 D q = 3 D p
103 simpr φ p B Unit P q B Unit P p P q = Q D p = 2 D p = 2
104 103 oveq2d φ p B Unit P q B Unit P p P q = Q D p = 2 3 D p = 3 2
105 3cn 3
106 2cn 2
107 ax-1cn 1
108 2p1e3 2 + 1 = 3
109 105 106 107 108 subaddrii 3 2 = 1
110 109 a1i φ p B Unit P q B Unit P p P q = Q D p = 2 3 2 = 1
111 102 104 110 3eqtrd φ p B Unit P q B Unit P p P q = Q D p = 2 D q = 1
112 4 5 2 3 1 72 73 111 ply1dg1rtn0 φ p B Unit P q B Unit P p P q = Q D p = 2 O q -1 0 ˙
113 71 112 pm2.21ddne φ p B Unit P q B Unit P p P q = Q D p = 2
114 113 adantlr φ p B Unit P q B Unit P p P q = Q D p 2 3 D p = 2
115 101 adantr φ p B Unit P q B Unit P p P q = Q D p = 3 D q = 3 D p
116 simpr φ p B Unit P q B Unit P p P q = Q D p = 3 D p = 3
117 116 oveq2d φ p B Unit P q B Unit P p P q = Q D p = 3 3 D p = 3 3
118 105 subidi 3 3 = 0
119 118 a1i φ p B Unit P q B Unit P p P q = Q D p = 3 3 3 = 0
120 115 117 119 3eqtrd φ p B Unit P q B Unit P p P q = Q D p = 3 D q = 0
121 20 adantr φ p B Unit P q B Unit P p P q = Q D p = 3 F Field
122 33 5 eleqtrdi φ p B Unit P q B Unit P p P q = Q q Base P
123 122 adantr φ p B Unit P q B Unit P p P q = Q D p = 3 q Base P
124 4 13 14 1 121 3 123 ply1unit φ p B Unit P q B Unit P p P q = Q D p = 3 q Unit P D q = 0
125 120 124 mpbird φ p B Unit P q B Unit P p P q = Q D p = 3 q Unit P
126 32 eldifbd φ p B Unit P q B Unit P p P q = Q ¬ q Unit P
127 126 adantr φ p B Unit P q B Unit P p P q = Q D p = 3 ¬ q Unit P
128 125 127 pm2.21fal φ p B Unit P q B Unit P p P q = Q D p = 3
129 128 adantlr φ p B Unit P q B Unit P p P q = Q D p 2 3 D p = 3
130 elpri D p 2 3 D p = 2 D p = 3
131 130 adantl φ p B Unit P q B Unit P p P q = Q D p 2 3 D p = 2 D p = 3
132 114 129 131 mpjaodan φ p B Unit P q B Unit P p P q = Q D p 2 3
133 79 a1i φ p B Unit P q B Unit P p P q = Q 3 0
134 89 nn0red φ p B Unit P q B Unit P p P q = Q D p
135 nn0addge1 D p D q 0 D p D p + D q
136 134 93 135 syl2anc φ p B Unit P q B Unit P p P q = Q D p D p + D q
137 136 100 breqtrd φ p B Unit P q B Unit P p P q = Q D p 3
138 fznn0 3 0 D p 0 3 D p 0 D p 3
139 138 biimpar 3 0 D p 0 D p 3 D p 0 3
140 133 89 137 139 syl12anc φ p B Unit P q B Unit P p P q = Q D p 0 3
141 fz0to3un2pr 0 3 = 0 1 2 3
142 140 141 eleqtrdi φ p B Unit P q B Unit P p P q = Q D p 0 1 2 3
143 elun D p 0 1 2 3 D p 0 1 D p 2 3
144 142 143 sylib φ p B Unit P q B Unit P p P q = Q D p 0 1 D p 2 3
145 54 132 144 mpjaodan φ p B Unit P q B Unit P p P q = Q
146 145 r19.29ffa φ p B Unit P q B Unit P p P q = Q
147 146 inegd φ ¬ p B Unit P q B Unit P p P q = Q
148 ralnex2 p B Unit P q B Unit P ¬ p P q = Q ¬ p B Unit P q B Unit P p P q = Q
149 147 148 sylibr φ p B Unit P q B Unit P ¬ p P q = Q
150 df-ne p P q Q ¬ p P q = Q
151 150 2ralbii p B Unit P q B Unit P p P q Q p B Unit P q B Unit P ¬ p P q = Q
152 149 151 sylibr φ p B Unit P q B Unit P p P q Q
153 eqid Unit P = Unit P
154 eqid Irred P = Irred P
155 eqid B Unit P = B Unit P
156 5 153 154 155 34 isirred Q Irred P Q B Unit P p B Unit P q B Unit P p P q Q
157 19 152 156 sylanbrc φ Q Irred P