| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg3rt0irred.z |
|
| 2 |
|
ply1dg3rt0irred.o |
|
| 3 |
|
ply1dg3rt0irred.d |
|
| 4 |
|
ply1dg3rt0irred.p |
|
| 5 |
|
ply1dg3rt0irred.b |
|
| 6 |
|
ply1dg3rt0irred.f |
|
| 7 |
|
ply1dg3rt0irred.q |
|
| 8 |
|
ply1dg3rt0irred.1 |
|
| 9 |
|
ply1dg3rt0irred.2 |
|
| 10 |
|
3ne0 |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
eqnetrd |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
7 5
|
eleqtrdi |
|
| 16 |
4 13 14 1 6 3 15
|
ply1unit |
|
| 17 |
16
|
necon3bbid |
|
| 18 |
12 17
|
mpbird |
|
| 19 |
7 18
|
eldifd |
|
| 20 |
6
|
ad3antrrr |
|
| 21 |
|
simpllr |
|
| 22 |
21
|
eldifad |
|
| 23 |
22 5
|
eleqtrdi |
|
| 24 |
4 13 14 1 20 3 23
|
ply1unit |
|
| 25 |
24
|
biimpar |
|
| 26 |
21
|
eldifbd |
|
| 27 |
26
|
adantr |
|
| 28 |
25 27
|
pm2.21fal |
|
| 29 |
28
|
adantlr |
|
| 30 |
6
|
fldcrngd |
|
| 31 |
30
|
ad3antrrr |
|
| 32 |
|
simplr |
|
| 33 |
32
|
eldifad |
|
| 34 |
|
eqid |
|
| 35 |
4 5 2 3 1 31 22 33 34
|
ply1mulrtss |
|
| 36 |
|
simpr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
cnveqd |
|
| 39 |
38
|
imaeq1d |
|
| 40 |
35 39
|
sseqtrd |
|
| 41 |
8
|
ad3antrrr |
|
| 42 |
40 41
|
sseqtrd |
|
| 43 |
|
ss0 |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
20
|
adantr |
|
| 47 |
22
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
4 5 2 3 1 46 47 48
|
ply1dg1rtn0 |
|
| 50 |
45 49
|
pm2.21ddne |
|
| 51 |
50
|
adantlr |
|
| 52 |
|
elpri |
|
| 53 |
52
|
adantl |
|
| 54 |
29 51 53
|
mpjaodan |
|
| 55 |
4 5 2 3 1 31 33 22 34
|
ply1mulrtss |
|
| 56 |
|
fldidom |
|
| 57 |
6 56
|
syl |
|
| 58 |
4
|
ply1idom |
|
| 59 |
57 58
|
syl |
|
| 60 |
59
|
idomcringd |
|
| 61 |
60
|
ad3antrrr |
|
| 62 |
5 34 61 33 22
|
crngcomd |
|
| 63 |
62 36
|
eqtrd |
|
| 64 |
63
|
fveq2d |
|
| 65 |
64
|
cnveqd |
|
| 66 |
65
|
imaeq1d |
|
| 67 |
66 41
|
eqtrd |
|
| 68 |
55 67
|
sseqtrd |
|
| 69 |
|
ss0 |
|
| 70 |
68 69
|
syl |
|
| 71 |
70
|
adantr |
|
| 72 |
20
|
adantr |
|
| 73 |
33
|
adantr |
|
| 74 |
30
|
crngringd |
|
| 75 |
74
|
ad3antrrr |
|
| 76 |
|
eqid |
|
| 77 |
59
|
idomdomd |
|
| 78 |
77
|
ad3antrrr |
|
| 79 |
|
3nn0 |
|
| 80 |
9 79
|
eqeltrdi |
|
| 81 |
3 4 76 5
|
deg1nn0clb |
|
| 82 |
81
|
biimpar |
|
| 83 |
74 7 80 82
|
syl21anc |
|
| 84 |
83
|
ad3antrrr |
|
| 85 |
36 84
|
eqnetrd |
|
| 86 |
5 34 76 78 22 33 85
|
domnmuln0rd |
|
| 87 |
86
|
simpld |
|
| 88 |
3 4 76 5
|
deg1nn0cl |
|
| 89 |
75 22 87 88
|
syl3anc |
|
| 90 |
89
|
nn0cnd |
|
| 91 |
86
|
simprd |
|
| 92 |
3 4 76 5
|
deg1nn0cl |
|
| 93 |
75 33 91 92
|
syl3anc |
|
| 94 |
93
|
nn0cnd |
|
| 95 |
36
|
fveq2d |
|
| 96 |
57
|
idomdomd |
|
| 97 |
96
|
ad3antrrr |
|
| 98 |
3 4 5 34 76 97 22 87 33 91
|
deg1mul |
|
| 99 |
9
|
ad3antrrr |
|
| 100 |
95 98 99
|
3eqtr3d |
|
| 101 |
90 94 100
|
mvlladdd |
|
| 102 |
101
|
adantr |
|
| 103 |
|
simpr |
|
| 104 |
103
|
oveq2d |
|
| 105 |
|
3cn |
|
| 106 |
|
2cn |
|
| 107 |
|
ax-1cn |
|
| 108 |
|
2p1e3 |
|
| 109 |
105 106 107 108
|
subaddrii |
|
| 110 |
109
|
a1i |
|
| 111 |
102 104 110
|
3eqtrd |
|
| 112 |
4 5 2 3 1 72 73 111
|
ply1dg1rtn0 |
|
| 113 |
71 112
|
pm2.21ddne |
|
| 114 |
113
|
adantlr |
|
| 115 |
101
|
adantr |
|
| 116 |
|
simpr |
|
| 117 |
116
|
oveq2d |
|
| 118 |
105
|
subidi |
|
| 119 |
118
|
a1i |
|
| 120 |
115 117 119
|
3eqtrd |
|
| 121 |
20
|
adantr |
|
| 122 |
33 5
|
eleqtrdi |
|
| 123 |
122
|
adantr |
|
| 124 |
4 13 14 1 121 3 123
|
ply1unit |
|
| 125 |
120 124
|
mpbird |
|
| 126 |
32
|
eldifbd |
|
| 127 |
126
|
adantr |
|
| 128 |
125 127
|
pm2.21fal |
|
| 129 |
128
|
adantlr |
|
| 130 |
|
elpri |
|
| 131 |
130
|
adantl |
|
| 132 |
114 129 131
|
mpjaodan |
|
| 133 |
79
|
a1i |
|
| 134 |
89
|
nn0red |
|
| 135 |
|
nn0addge1 |
|
| 136 |
134 93 135
|
syl2anc |
|
| 137 |
136 100
|
breqtrd |
|
| 138 |
|
fznn0 |
|
| 139 |
138
|
biimpar |
|
| 140 |
133 89 137 139
|
syl12anc |
|
| 141 |
|
fz0to3un2pr |
|
| 142 |
140 141
|
eleqtrdi |
|
| 143 |
|
elun |
|
| 144 |
142 143
|
sylib |
|
| 145 |
54 132 144
|
mpjaodan |
|
| 146 |
145
|
r19.29ffa |
|
| 147 |
146
|
inegd |
|
| 148 |
|
ralnex2 |
|
| 149 |
147 148
|
sylibr |
|
| 150 |
|
df-ne |
|
| 151 |
150
|
2ralbii |
|
| 152 |
149 151
|
sylibr |
|
| 153 |
|
eqid |
|
| 154 |
|
eqid |
|
| 155 |
|
eqid |
|
| 156 |
5 153 154 155 34
|
isirred |
|
| 157 |
19 152 156
|
sylanbrc |
|