| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1asclunit.1 |
|
| 2 |
|
ply1asclunit.2 |
|
| 3 |
|
ply1asclunit.3 |
|
| 4 |
|
ply1asclunit.4 |
|
| 5 |
|
ply1asclunit.5 |
|
| 6 |
|
ply1unit.d |
|
| 7 |
|
ply1unit.f |
|
| 8 |
5
|
fldcrngd |
|
| 9 |
8
|
crngringd |
|
| 10 |
9
|
adantr |
|
| 11 |
1
|
ply1ring |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
unitinvcl |
|
| 16 |
12 15
|
sylan |
|
| 17 |
|
eqid |
|
| 18 |
17 13
|
unitcl |
|
| 19 |
16 18
|
syl |
|
| 20 |
|
eqid |
|
| 21 |
5
|
flddrngd |
|
| 22 |
|
drngnzr |
|
| 23 |
1
|
ply1nz |
|
| 24 |
21 22 23
|
3syl |
|
| 25 |
24
|
adantr |
|
| 26 |
13 20 25 16
|
unitnz |
|
| 27 |
6 1 20 17
|
deg1nn0cl |
|
| 28 |
10 19 26 27
|
syl3anc |
|
| 29 |
28
|
nn0red |
|
| 30 |
28
|
nn0ge0d |
|
| 31 |
29 30
|
jca |
|
| 32 |
7
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
13 20 25 33
|
unitnz |
|
| 35 |
6 1 20 17
|
deg1nn0cl |
|
| 36 |
10 32 34 35
|
syl3anc |
|
| 37 |
36
|
nn0red |
|
| 38 |
36
|
nn0ge0d |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
13 14 39 40
|
unitlinv |
|
| 42 |
12 41
|
sylan |
|
| 43 |
42
|
fveq2d |
|
| 44 |
|
eqid |
|
| 45 |
|
drngdomn |
|
| 46 |
21 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
|
eqid |
|
| 49 |
48 17 1 3
|
coe1fvalcl |
|
| 50 |
19 28 49
|
syl2anc |
|
| 51 |
6 1 20 17 4 48
|
deg1ldg |
|
| 52 |
10 19 26 51
|
syl3anc |
|
| 53 |
3 44 4
|
domnrrg |
|
| 54 |
47 50 52 53
|
syl3anc |
|
| 55 |
6 1 44 17 39 20 10 19 26 54 32 34
|
deg1mul2 |
|
| 56 |
|
eqid |
|
| 57 |
1 40 56 6
|
mon1pid |
|
| 58 |
57
|
simprd |
|
| 59 |
21 22 58
|
3syl |
|
| 60 |
59
|
adantr |
|
| 61 |
43 55 60
|
3eqtr3d |
|
| 62 |
|
add20 |
|
| 63 |
62
|
anassrs |
|
| 64 |
63
|
simplbda |
|
| 65 |
31 37 38 61 64
|
syl1111anc |
|
| 66 |
9
|
adantr |
|
| 67 |
7
|
adantr |
|
| 68 |
6 1 17
|
deg1xrcl |
|
| 69 |
7 68
|
syl |
|
| 70 |
|
0xr |
|
| 71 |
|
xeqlelt |
|
| 72 |
69 70 71
|
sylancl |
|
| 73 |
72
|
simprbda |
|
| 74 |
6 1 17 2
|
deg1le0 |
|
| 75 |
74
|
biimpa |
|
| 76 |
66 67 73 75
|
syl21anc |
|
| 77 |
5
|
adantr |
|
| 78 |
|
0nn0 |
|
| 79 |
|
eqid |
|
| 80 |
79 17 1 3
|
coe1fvalcl |
|
| 81 |
67 78 80
|
sylancl |
|
| 82 |
|
simpl |
|
| 83 |
72
|
simplbda |
|
| 84 |
6 1 20 17
|
deg1lt0 |
|
| 85 |
84
|
necon3bbid |
|
| 86 |
85
|
biimpa |
|
| 87 |
66 67 83 86
|
syl21anc |
|
| 88 |
9
|
adantr |
|
| 89 |
7
|
adantr |
|
| 90 |
|
simpr |
|
| 91 |
6 1 4 17 20 88 89 90
|
deg1le0eq0 |
|
| 92 |
91
|
necon3bid |
|
| 93 |
92
|
biimpa |
|
| 94 |
82 73 87 93
|
syl21anc |
|
| 95 |
1 2 3 4 77 81 94
|
ply1asclunit |
|
| 96 |
76 95
|
eqeltrd |
|
| 97 |
65 96
|
impbida |
|