| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1asclunit.1 |
|- P = ( Poly1 ` F ) |
| 2 |
|
ply1asclunit.2 |
|- A = ( algSc ` P ) |
| 3 |
|
ply1asclunit.3 |
|- B = ( Base ` F ) |
| 4 |
|
ply1asclunit.4 |
|- .0. = ( 0g ` F ) |
| 5 |
|
ply1asclunit.5 |
|- ( ph -> F e. Field ) |
| 6 |
|
ply1unit.d |
|- D = ( deg1 ` F ) |
| 7 |
|
ply1unit.f |
|- ( ph -> C e. ( Base ` P ) ) |
| 8 |
5
|
fldcrngd |
|- ( ph -> F e. CRing ) |
| 9 |
8
|
crngringd |
|- ( ph -> F e. Ring ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> F e. Ring ) |
| 11 |
1
|
ply1ring |
|- ( F e. Ring -> P e. Ring ) |
| 12 |
9 11
|
syl |
|- ( ph -> P e. Ring ) |
| 13 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
| 14 |
|
eqid |
|- ( invr ` P ) = ( invr ` P ) |
| 15 |
13 14
|
unitinvcl |
|- ( ( P e. Ring /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Unit ` P ) ) |
| 16 |
12 15
|
sylan |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Unit ` P ) ) |
| 17 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 18 |
17 13
|
unitcl |
|- ( ( ( invr ` P ) ` C ) e. ( Unit ` P ) -> ( ( invr ` P ) ` C ) e. ( Base ` P ) ) |
| 19 |
16 18
|
syl |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Base ` P ) ) |
| 20 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 21 |
5
|
flddrngd |
|- ( ph -> F e. DivRing ) |
| 22 |
|
drngnzr |
|- ( F e. DivRing -> F e. NzRing ) |
| 23 |
1
|
ply1nz |
|- ( F e. NzRing -> P e. NzRing ) |
| 24 |
21 22 23
|
3syl |
|- ( ph -> P e. NzRing ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> P e. NzRing ) |
| 26 |
13 20 25 16
|
unitnz |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) |
| 27 |
6 1 20 17
|
deg1nn0cl |
|- ( ( F e. Ring /\ ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) |
| 28 |
10 19 26 27
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) |
| 29 |
28
|
nn0red |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. RR ) |
| 30 |
28
|
nn0ge0d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) |
| 31 |
29 30
|
jca |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) ) |
| 32 |
7
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C e. ( Base ` P ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C e. ( Unit ` P ) ) |
| 34 |
13 20 25 33
|
unitnz |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C =/= ( 0g ` P ) ) |
| 35 |
6 1 20 17
|
deg1nn0cl |
|- ( ( F e. Ring /\ C e. ( Base ` P ) /\ C =/= ( 0g ` P ) ) -> ( D ` C ) e. NN0 ) |
| 36 |
10 32 34 35
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) e. NN0 ) |
| 37 |
36
|
nn0red |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) e. RR ) |
| 38 |
36
|
nn0ge0d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> 0 <_ ( D ` C ) ) |
| 39 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 40 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 41 |
13 14 39 40
|
unitlinv |
|- ( ( P e. Ring /\ C e. ( Unit ` P ) ) -> ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) = ( 1r ` P ) ) |
| 42 |
12 41
|
sylan |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) = ( 1r ` P ) ) |
| 43 |
42
|
fveq2d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) ) = ( D ` ( 1r ` P ) ) ) |
| 44 |
|
eqid |
|- ( RLReg ` F ) = ( RLReg ` F ) |
| 45 |
|
drngdomn |
|- ( F e. DivRing -> F e. Domn ) |
| 46 |
21 45
|
syl |
|- ( ph -> F e. Domn ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> F e. Domn ) |
| 48 |
|
eqid |
|- ( coe1 ` ( ( invr ` P ) ` C ) ) = ( coe1 ` ( ( invr ` P ) ` C ) ) |
| 49 |
48 17 1 3
|
coe1fvalcl |
|- ( ( ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B ) |
| 50 |
19 28 49
|
syl2anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B ) |
| 51 |
6 1 20 17 4 48
|
deg1ldg |
|- ( ( F e. Ring /\ ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) |
| 52 |
10 19 26 51
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) |
| 53 |
3 44 4
|
domnrrg |
|- ( ( F e. Domn /\ ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B /\ ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. ( RLReg ` F ) ) |
| 54 |
47 50 52 53
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. ( RLReg ` F ) ) |
| 55 |
6 1 44 17 39 20 10 19 26 54 32 34
|
deg1mul2 |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) ) = ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) ) |
| 56 |
|
eqid |
|- ( Monic1p ` F ) = ( Monic1p ` F ) |
| 57 |
1 40 56 6
|
mon1pid |
|- ( F e. NzRing -> ( ( 1r ` P ) e. ( Monic1p ` F ) /\ ( D ` ( 1r ` P ) ) = 0 ) ) |
| 58 |
57
|
simprd |
|- ( F e. NzRing -> ( D ` ( 1r ` P ) ) = 0 ) |
| 59 |
21 22 58
|
3syl |
|- ( ph -> ( D ` ( 1r ` P ) ) = 0 ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( 1r ` P ) ) = 0 ) |
| 61 |
43 55 60
|
3eqtr3d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 ) |
| 62 |
|
add20 |
|- ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( ( D ` C ) e. RR /\ 0 <_ ( D ` C ) ) ) -> ( ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 <-> ( ( D ` ( ( invr ` P ) ` C ) ) = 0 /\ ( D ` C ) = 0 ) ) ) |
| 63 |
62
|
anassrs |
|- ( ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( D ` C ) e. RR ) /\ 0 <_ ( D ` C ) ) -> ( ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 <-> ( ( D ` ( ( invr ` P ) ` C ) ) = 0 /\ ( D ` C ) = 0 ) ) ) |
| 64 |
63
|
simplbda |
|- ( ( ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( D ` C ) e. RR ) /\ 0 <_ ( D ` C ) ) /\ ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 ) -> ( D ` C ) = 0 ) |
| 65 |
31 37 38 61 64
|
syl1111anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) = 0 ) |
| 66 |
9
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> F e. Ring ) |
| 67 |
7
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C e. ( Base ` P ) ) |
| 68 |
6 1 17
|
deg1xrcl |
|- ( C e. ( Base ` P ) -> ( D ` C ) e. RR* ) |
| 69 |
7 68
|
syl |
|- ( ph -> ( D ` C ) e. RR* ) |
| 70 |
|
0xr |
|- 0 e. RR* |
| 71 |
|
xeqlelt |
|- ( ( ( D ` C ) e. RR* /\ 0 e. RR* ) -> ( ( D ` C ) = 0 <-> ( ( D ` C ) <_ 0 /\ -. ( D ` C ) < 0 ) ) ) |
| 72 |
69 70 71
|
sylancl |
|- ( ph -> ( ( D ` C ) = 0 <-> ( ( D ` C ) <_ 0 /\ -. ( D ` C ) < 0 ) ) ) |
| 73 |
72
|
simprbda |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( D ` C ) <_ 0 ) |
| 74 |
6 1 17 2
|
deg1le0 |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( ( D ` C ) <_ 0 <-> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) ) |
| 75 |
74
|
biimpa |
|- ( ( ( F e. Ring /\ C e. ( Base ` P ) ) /\ ( D ` C ) <_ 0 ) -> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) |
| 76 |
66 67 73 75
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) |
| 77 |
5
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> F e. Field ) |
| 78 |
|
0nn0 |
|- 0 e. NN0 |
| 79 |
|
eqid |
|- ( coe1 ` C ) = ( coe1 ` C ) |
| 80 |
79 17 1 3
|
coe1fvalcl |
|- ( ( C e. ( Base ` P ) /\ 0 e. NN0 ) -> ( ( coe1 ` C ) ` 0 ) e. B ) |
| 81 |
67 78 80
|
sylancl |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( ( coe1 ` C ) ` 0 ) e. B ) |
| 82 |
|
simpl |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ph ) |
| 83 |
72
|
simplbda |
|- ( ( ph /\ ( D ` C ) = 0 ) -> -. ( D ` C ) < 0 ) |
| 84 |
6 1 20 17
|
deg1lt0 |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( ( D ` C ) < 0 <-> C = ( 0g ` P ) ) ) |
| 85 |
84
|
necon3bbid |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( -. ( D ` C ) < 0 <-> C =/= ( 0g ` P ) ) ) |
| 86 |
85
|
biimpa |
|- ( ( ( F e. Ring /\ C e. ( Base ` P ) ) /\ -. ( D ` C ) < 0 ) -> C =/= ( 0g ` P ) ) |
| 87 |
66 67 83 86
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C =/= ( 0g ` P ) ) |
| 88 |
9
|
adantr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> F e. Ring ) |
| 89 |
7
|
adantr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> C e. ( Base ` P ) ) |
| 90 |
|
simpr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( D ` C ) <_ 0 ) |
| 91 |
6 1 4 17 20 88 89 90
|
deg1le0eq0 |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( C = ( 0g ` P ) <-> ( ( coe1 ` C ) ` 0 ) = .0. ) ) |
| 92 |
91
|
necon3bid |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( C =/= ( 0g ` P ) <-> ( ( coe1 ` C ) ` 0 ) =/= .0. ) ) |
| 93 |
92
|
biimpa |
|- ( ( ( ph /\ ( D ` C ) <_ 0 ) /\ C =/= ( 0g ` P ) ) -> ( ( coe1 ` C ) ` 0 ) =/= .0. ) |
| 94 |
82 73 87 93
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( ( coe1 ` C ) ` 0 ) =/= .0. ) |
| 95 |
1 2 3 4 77 81 94
|
ply1asclunit |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( A ` ( ( coe1 ` C ) ` 0 ) ) e. ( Unit ` P ) ) |
| 96 |
76 95
|
eqeltrd |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C e. ( Unit ` P ) ) |
| 97 |
65 96
|
impbida |
|- ( ph -> ( C e. ( Unit ` P ) <-> ( D ` C ) = 0 ) ) |