| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1le0.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1le0.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1le0.b |
|- B = ( Base ` P ) |
| 4 |
|
deg1le0.a |
|- A = ( algSc ` P ) |
| 5 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 6 |
1
|
deg1fval |
|- D = ( 1o mDeg R ) |
| 7 |
|
1on |
|- 1o e. On |
| 8 |
7
|
a1i |
|- ( ( R e. Ring /\ F e. B ) -> 1o e. On ) |
| 9 |
|
simpl |
|- ( ( R e. Ring /\ F e. B ) -> R e. Ring ) |
| 10 |
2 3
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
| 11 |
2 4
|
ply1ascl |
|- A = ( algSc ` ( 1o mPoly R ) ) |
| 12 |
|
simpr |
|- ( ( R e. Ring /\ F e. B ) -> F e. B ) |
| 13 |
5 6 8 9 10 11 12
|
mdegle0 |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) |
| 14 |
|
0nn0 |
|- 0 e. NN0 |
| 15 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 16 |
15
|
coe1fv |
|- ( ( F e. B /\ 0 e. NN0 ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) |
| 17 |
12 14 16
|
sylancl |
|- ( ( R e. Ring /\ F e. B ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) |
| 18 |
17
|
fveq2d |
|- ( ( R e. Ring /\ F e. B ) -> ( A ` ( ( coe1 ` F ) ` 0 ) ) = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) |
| 19 |
18
|
eqeq2d |
|- ( ( R e. Ring /\ F e. B ) -> ( F = ( A ` ( ( coe1 ` F ) ` 0 ) ) <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) |
| 20 |
13 19
|
bitr4d |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( ( coe1 ` F ) ` 0 ) ) ) ) |