Metamath Proof Explorer


Theorem deg1le0

Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1le0.d
|- D = ( deg1 ` R )
deg1le0.p
|- P = ( Poly1 ` R )
deg1le0.b
|- B = ( Base ` P )
deg1le0.a
|- A = ( algSc ` P )
Assertion deg1le0
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( ( coe1 ` F ) ` 0 ) ) ) )

Proof

Step Hyp Ref Expression
1 deg1le0.d
 |-  D = ( deg1 ` R )
2 deg1le0.p
 |-  P = ( Poly1 ` R )
3 deg1le0.b
 |-  B = ( Base ` P )
4 deg1le0.a
 |-  A = ( algSc ` P )
5 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
6 1 deg1fval
 |-  D = ( 1o mDeg R )
7 1on
 |-  1o e. On
8 7 a1i
 |-  ( ( R e. Ring /\ F e. B ) -> 1o e. On )
9 simpl
 |-  ( ( R e. Ring /\ F e. B ) -> R e. Ring )
10 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
11 2 10 3 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
12 2 4 ply1ascl
 |-  A = ( algSc ` ( 1o mPoly R ) )
13 simpr
 |-  ( ( R e. Ring /\ F e. B ) -> F e. B )
14 5 6 8 9 11 12 13 mdegle0
 |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) )
15 0nn0
 |-  0 e. NN0
16 eqid
 |-  ( coe1 ` F ) = ( coe1 ` F )
17 16 coe1fv
 |-  ( ( F e. B /\ 0 e. NN0 ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) )
18 13 15 17 sylancl
 |-  ( ( R e. Ring /\ F e. B ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) )
19 18 fveq2d
 |-  ( ( R e. Ring /\ F e. B ) -> ( A ` ( ( coe1 ` F ) ` 0 ) ) = ( A ` ( F ` ( 1o X. { 0 } ) ) ) )
20 19 eqeq2d
 |-  ( ( R e. Ring /\ F e. B ) -> ( F = ( A ` ( ( coe1 ` F ) ` 0 ) ) <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) )
21 14 20 bitr4d
 |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( ( coe1 ` F ) ` 0 ) ) ) )