Metamath Proof Explorer


Theorem ply1ascl

Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses ply1ascl.p
|- P = ( Poly1 ` R )
ply1ascl.a
|- A = ( algSc ` P )
Assertion ply1ascl
|- A = ( algSc ` ( 1o mPoly R ) )

Proof

Step Hyp Ref Expression
1 ply1ascl.p
 |-  P = ( Poly1 ` R )
2 ply1ascl.a
 |-  A = ( algSc ` P )
3 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
4 eqid
 |-  ( Scalar ` ( 1o mPoly R ) ) = ( Scalar ` ( 1o mPoly R ) )
5 1 ply1sca
 |-  ( R e. _V -> R = ( Scalar ` P ) )
6 5 fveq2d
 |-  ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) )
7 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
8 1on
 |-  1o e. On
9 8 a1i
 |-  ( R e. _V -> 1o e. On )
10 id
 |-  ( R e. _V -> R e. _V )
11 7 9 10 mplsca
 |-  ( R e. _V -> R = ( Scalar ` ( 1o mPoly R ) ) )
12 11 fveq2d
 |-  ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) )
13 eqid
 |-  ( .s ` P ) = ( .s ` P )
14 1 7 13 ply1vsca
 |-  ( .s ` P ) = ( .s ` ( 1o mPoly R ) )
15 14 a1i
 |-  ( R e. _V -> ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) )
16 15 oveqdr
 |-  ( ( R e. _V /\ ( x e. ( Base ` R ) /\ y e. _V ) ) -> ( x ( .s ` P ) y ) = ( x ( .s ` ( 1o mPoly R ) ) y ) )
17 eqid
 |-  ( 1r ` P ) = ( 1r ` P )
18 7 1 17 ply1mpl1
 |-  ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) )
19 18 a1i
 |-  ( R e. _V -> ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) )
20 fvexd
 |-  ( R e. _V -> ( 1r ` P ) e. _V )
21 3 4 6 12 16 19 20 asclpropd
 |-  ( R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) )
22 fvprc
 |-  ( -. R e. _V -> ( Poly1 ` R ) = (/) )
23 1 22 syl5eq
 |-  ( -. R e. _V -> P = (/) )
24 reldmmpl
 |-  Rel dom mPoly
25 24 ovprc2
 |-  ( -. R e. _V -> ( 1o mPoly R ) = (/) )
26 23 25 eqtr4d
 |-  ( -. R e. _V -> P = ( 1o mPoly R ) )
27 26 fveq2d
 |-  ( -. R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) )
28 21 27 pm2.61i
 |-  ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) )
29 2 28 eqtri
 |-  A = ( algSc ` ( 1o mPoly R ) )