Metamath Proof Explorer


Theorem subrg1ascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p
|- P = ( Poly1 ` R )
subrg1ascl.a
|- A = ( algSc ` P )
subrg1ascl.h
|- H = ( R |`s T )
subrg1ascl.u
|- U = ( Poly1 ` H )
subrg1ascl.r
|- ( ph -> T e. ( SubRing ` R ) )
subrg1ascl.c
|- C = ( algSc ` U )
Assertion subrg1ascl
|- ( ph -> C = ( A |` T ) )

Proof

Step Hyp Ref Expression
1 subrg1ascl.p
 |-  P = ( Poly1 ` R )
2 subrg1ascl.a
 |-  A = ( algSc ` P )
3 subrg1ascl.h
 |-  H = ( R |`s T )
4 subrg1ascl.u
 |-  U = ( Poly1 ` H )
5 subrg1ascl.r
 |-  ( ph -> T e. ( SubRing ` R ) )
6 subrg1ascl.c
 |-  C = ( algSc ` U )
7 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
8 1 2 ply1ascl
 |-  A = ( algSc ` ( 1o mPoly R ) )
9 eqid
 |-  ( 1o mPoly H ) = ( 1o mPoly H )
10 1on
 |-  1o e. On
11 10 a1i
 |-  ( ph -> 1o e. On )
12 4 6 ply1ascl
 |-  C = ( algSc ` ( 1o mPoly H ) )
13 7 8 3 9 11 5 12 subrgascl
 |-  ( ph -> C = ( A |` T ) )