Metamath Proof Explorer


Theorem subrg1ascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p P=Poly1R
subrg1ascl.a A=algScP
subrg1ascl.h H=R𝑠T
subrg1ascl.u U=Poly1H
subrg1ascl.r φTSubRingR
subrg1ascl.c C=algScU
Assertion subrg1ascl φC=AT

Proof

Step Hyp Ref Expression
1 subrg1ascl.p P=Poly1R
2 subrg1ascl.a A=algScP
3 subrg1ascl.h H=R𝑠T
4 subrg1ascl.u U=Poly1H
5 subrg1ascl.r φTSubRingR
6 subrg1ascl.c C=algScU
7 eqid 1𝑜mPolyR=1𝑜mPolyR
8 1 2 ply1ascl A=algSc1𝑜mPolyR
9 eqid 1𝑜mPolyH=1𝑜mPolyH
10 1on 1𝑜On
11 10 a1i φ1𝑜On
12 4 6 ply1ascl C=algSc1𝑜mPolyH
13 7 8 3 9 11 5 12 subrgascl φC=AT