Metamath Proof Explorer


Theorem subrgascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgascl.p P = I mPoly R
subrgascl.a A = algSc P
subrgascl.h H = R 𝑠 T
subrgascl.u U = I mPoly H
subrgascl.i φ I W
subrgascl.r φ T SubRing R
subrgascl.c C = algSc U
Assertion subrgascl φ C = A T

Proof

Step Hyp Ref Expression
1 subrgascl.p P = I mPoly R
2 subrgascl.a A = algSc P
3 subrgascl.h H = R 𝑠 T
4 subrgascl.u U = I mPoly H
5 subrgascl.i φ I W
6 subrgascl.r φ T SubRing R
7 subrgascl.c C = algSc U
8 eqid Scalar U = Scalar U
9 eqid Base Scalar U = Base Scalar U
10 7 8 9 asclfn C Fn Base Scalar U
11 3 subrgbas T SubRing R T = Base H
12 6 11 syl φ T = Base H
13 3 ovexi H V
14 13 a1i φ H V
15 4 5 14 mplsca φ H = Scalar U
16 15 fveq2d φ Base H = Base Scalar U
17 12 16 eqtrd φ T = Base Scalar U
18 17 fneq2d φ C Fn T C Fn Base Scalar U
19 10 18 mpbiri φ C Fn T
20 eqid Scalar P = Scalar P
21 eqid Base Scalar P = Base Scalar P
22 2 20 21 asclfn A Fn Base Scalar P
23 subrgrcl T SubRing R R Ring
24 6 23 syl φ R Ring
25 1 5 24 mplsca φ R = Scalar P
26 25 fveq2d φ Base R = Base Scalar P
27 26 fneq2d φ A Fn Base R A Fn Base Scalar P
28 22 27 mpbiri φ A Fn Base R
29 eqid Base R = Base R
30 29 subrgss T SubRing R T Base R
31 6 30 syl φ T Base R
32 fnssres A Fn Base R T Base R A T Fn T
33 28 31 32 syl2anc φ A T Fn T
34 fvres x T A T x = A x
35 34 adantl φ x T A T x = A x
36 eqid 0 R = 0 R
37 3 36 subrg0 T SubRing R 0 R = 0 H
38 6 37 syl φ 0 R = 0 H
39 38 ifeq2d φ if y = I × 0 x 0 R = if y = I × 0 x 0 H
40 39 adantr φ x T if y = I × 0 x 0 R = if y = I × 0 x 0 H
41 40 mpteq2dv φ x T y f 0 I | f -1 Fin if y = I × 0 x 0 R = y f 0 I | f -1 Fin if y = I × 0 x 0 H
42 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
43 5 adantr φ x T I W
44 24 adantr φ x T R Ring
45 31 sselda φ x T x Base R
46 1 42 36 29 2 43 44 45 mplascl φ x T A x = y f 0 I | f -1 Fin if y = I × 0 x 0 R
47 eqid 0 H = 0 H
48 eqid Base H = Base H
49 3 subrgring T SubRing R H Ring
50 6 49 syl φ H Ring
51 50 adantr φ x T H Ring
52 12 eleq2d φ x T x Base H
53 52 biimpa φ x T x Base H
54 4 42 47 48 7 43 51 53 mplascl φ x T C x = y f 0 I | f -1 Fin if y = I × 0 x 0 H
55 41 46 54 3eqtr4d φ x T A x = C x
56 35 55 eqtr2d φ x T C x = A T x
57 19 33 56 eqfnfvd φ C = A T