Step |
Hyp |
Ref |
Expression |
1 |
|
subrgascl.p |
|
2 |
|
subrgascl.a |
|
3 |
|
subrgascl.h |
|
4 |
|
subrgascl.u |
|
5 |
|
subrgascl.i |
|
6 |
|
subrgascl.r |
|
7 |
|
subrgascl.c |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
7 8 9
|
asclfn |
|
11 |
3
|
subrgbas |
|
12 |
6 11
|
syl |
|
13 |
3
|
ovexi |
|
14 |
13
|
a1i |
|
15 |
4 5 14
|
mplsca |
|
16 |
15
|
fveq2d |
|
17 |
12 16
|
eqtrd |
|
18 |
17
|
fneq2d |
|
19 |
10 18
|
mpbiri |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
2 20 21
|
asclfn |
|
23 |
|
subrgrcl |
|
24 |
6 23
|
syl |
|
25 |
1 5 24
|
mplsca |
|
26 |
25
|
fveq2d |
|
27 |
26
|
fneq2d |
|
28 |
22 27
|
mpbiri |
|
29 |
|
eqid |
|
30 |
29
|
subrgss |
|
31 |
6 30
|
syl |
|
32 |
|
fnssres |
|
33 |
28 31 32
|
syl2anc |
|
34 |
|
fvres |
|
35 |
34
|
adantl |
|
36 |
|
eqid |
|
37 |
3 36
|
subrg0 |
|
38 |
6 37
|
syl |
|
39 |
38
|
ifeq2d |
|
40 |
39
|
adantr |
|
41 |
40
|
mpteq2dv |
|
42 |
|
eqid |
|
43 |
5
|
adantr |
|
44 |
24
|
adantr |
|
45 |
31
|
sselda |
|
46 |
1 42 36 29 2 43 44 45
|
mplascl |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
3
|
subrgring |
|
50 |
6 49
|
syl |
|
51 |
50
|
adantr |
|
52 |
12
|
eleq2d |
|
53 |
52
|
biimpa |
|
54 |
4 42 47 48 7 43 51 53
|
mplascl |
|
55 |
41 46 54
|
3eqtr4d |
|
56 |
35 55
|
eqtr2d |
|
57 |
19 33 56
|
eqfnfvd |
|