| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgascl.p |
|
| 2 |
|
subrgascl.a |
|
| 3 |
|
subrgascl.h |
|
| 4 |
|
subrgascl.u |
|
| 5 |
|
subrgascl.i |
|
| 6 |
|
subrgascl.r |
|
| 7 |
|
subrgascl.c |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
7 8 9
|
asclfn |
|
| 11 |
3
|
subrgbas |
|
| 12 |
6 11
|
syl |
|
| 13 |
3
|
ovexi |
|
| 14 |
13
|
a1i |
|
| 15 |
4 5 14
|
mplsca |
|
| 16 |
15
|
fveq2d |
|
| 17 |
12 16
|
eqtrd |
|
| 18 |
17
|
fneq2d |
|
| 19 |
10 18
|
mpbiri |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
2 20 21
|
asclfn |
|
| 23 |
|
subrgrcl |
|
| 24 |
6 23
|
syl |
|
| 25 |
1 5 24
|
mplsca |
|
| 26 |
25
|
fveq2d |
|
| 27 |
26
|
fneq2d |
|
| 28 |
22 27
|
mpbiri |
|
| 29 |
|
eqid |
|
| 30 |
29
|
subrgss |
|
| 31 |
6 30
|
syl |
|
| 32 |
|
fnssres |
|
| 33 |
28 31 32
|
syl2anc |
|
| 34 |
|
fvres |
|
| 35 |
34
|
adantl |
|
| 36 |
|
eqid |
|
| 37 |
3 36
|
subrg0 |
|
| 38 |
6 37
|
syl |
|
| 39 |
38
|
ifeq2d |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
mpteq2dv |
|
| 42 |
|
eqid |
|
| 43 |
5
|
adantr |
|
| 44 |
24
|
adantr |
|
| 45 |
31
|
sselda |
|
| 46 |
1 42 36 29 2 43 44 45
|
mplascl |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
3
|
subrgring |
|
| 50 |
6 49
|
syl |
|
| 51 |
50
|
adantr |
|
| 52 |
12
|
eleq2d |
|
| 53 |
52
|
biimpa |
|
| 54 |
4 42 47 48 7 43 51 53
|
mplascl |
|
| 55 |
41 46 54
|
3eqtr4d |
|
| 56 |
35 55
|
eqtr2d |
|
| 57 |
19 33 56
|
eqfnfvd |
|