| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgascl.p |
|
| 2 |
|
subrgascl.a |
|
| 3 |
|
subrgascl.h |
|
| 4 |
|
subrgascl.u |
|
| 5 |
|
subrgascl.i |
|
| 6 |
|
subrgascl.r |
|
| 7 |
|
subrgasclcl.b |
|
| 8 |
|
subrgasclcl.k |
|
| 9 |
|
subrgasclcl.x |
|
| 10 |
|
iftrue |
|
| 11 |
10
|
eleq1d |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
subrgrcl |
|
| 18 |
6 17
|
syl |
|
| 19 |
1 14 16 8 2 5 18 9
|
mplascl |
|
| 20 |
19
|
adantr |
|
| 21 |
3
|
subrgring |
|
| 22 |
6 21
|
syl |
|
| 23 |
12 4 7 5 22
|
mplsubrg |
|
| 24 |
15
|
subrgss |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
sselda |
|
| 27 |
20 26
|
eqeltrrd |
|
| 28 |
12 13 14 15 27
|
psrelbas |
|
| 29 |
|
eqid |
|
| 30 |
29
|
fmpt |
|
| 31 |
28 30
|
sylibr |
|
| 32 |
5
|
adantr |
|
| 33 |
14
|
psrbag0 |
|
| 34 |
32 33
|
syl |
|
| 35 |
11 31 34
|
rspcdva |
|
| 36 |
3
|
subrgbas |
|
| 37 |
6 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
35 38
|
eleqtrrd |
|
| 40 |
|
eqid |
|
| 41 |
1 2 3 4 5 6 40
|
subrgascl |
|
| 42 |
41
|
fveq1d |
|
| 43 |
|
fvres |
|
| 44 |
42 43
|
sylan9eq |
|
| 45 |
|
eqid |
|
| 46 |
4
|
mplring |
|
| 47 |
4
|
mpllmod |
|
| 48 |
|
eqid |
|
| 49 |
40 45 46 47 48 7
|
asclf |
|
| 50 |
5 22 49
|
syl2anc |
|
| 51 |
50
|
adantr |
|
| 52 |
4 5 22
|
mplsca |
|
| 53 |
52
|
fveq2d |
|
| 54 |
37 53
|
eqtrd |
|
| 55 |
54
|
eleq2d |
|
| 56 |
55
|
biimpa |
|
| 57 |
51 56
|
ffvelcdmd |
|
| 58 |
44 57
|
eqeltrrd |
|
| 59 |
39 58
|
impbida |
|