Metamath Proof Explorer


Theorem mplmon2cl

Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mplmon2cl.p P=ImPolyR
mplmon2cl.d D=f0I|f-1Fin
mplmon2cl.z 0˙=0R
mplmon2cl.c C=BaseR
mplmon2cl.i φIW
mplmon2cl.r φRRing
mplmon2cl.b B=BaseP
mplmon2cl.x φXC
mplmon2cl.k φKD
Assertion mplmon2cl φyDify=KX0˙B

Proof

Step Hyp Ref Expression
1 mplmon2cl.p P=ImPolyR
2 mplmon2cl.d D=f0I|f-1Fin
3 mplmon2cl.z 0˙=0R
4 mplmon2cl.c C=BaseR
5 mplmon2cl.i φIW
6 mplmon2cl.r φRRing
7 mplmon2cl.b B=BaseP
8 mplmon2cl.x φXC
9 mplmon2cl.k φKD
10 eqid P=P
11 eqid 1R=1R
12 1 10 2 11 3 4 5 6 9 8 mplmon2 φXPyDify=K1R0˙=yDify=KX0˙
13 1 mpllmod IWRRingPLMod
14 5 6 13 syl2anc φPLMod
15 1 5 6 mplsca φR=ScalarP
16 15 fveq2d φBaseR=BaseScalarP
17 4 16 eqtrid φC=BaseScalarP
18 8 17 eleqtrd φXBaseScalarP
19 1 7 3 11 2 5 6 9 mplmon φyDify=K1R0˙B
20 eqid ScalarP=ScalarP
21 eqid BaseScalarP=BaseScalarP
22 7 20 10 21 lmodvscl PLModXBaseScalarPyDify=K1R0˙BXPyDify=K1R0˙B
23 14 18 19 22 syl3anc φXPyDify=K1R0˙B
24 12 23 eqeltrrd φyDify=KX0˙B