Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon2cl.p |
|- P = ( I mPoly R ) |
2 |
|
mplmon2cl.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
3 |
|
mplmon2cl.z |
|- .0. = ( 0g ` R ) |
4 |
|
mplmon2cl.c |
|- C = ( Base ` R ) |
5 |
|
mplmon2cl.i |
|- ( ph -> I e. W ) |
6 |
|
mplmon2cl.r |
|- ( ph -> R e. Ring ) |
7 |
|
mplmon2cl.b |
|- B = ( Base ` P ) |
8 |
|
mplmon2cl.x |
|- ( ph -> X e. C ) |
9 |
|
mplmon2cl.k |
|- ( ph -> K e. D ) |
10 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
12 |
1 10 2 11 3 4 5 6 9 8
|
mplmon2 |
|- ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |
13 |
1
|
mpllmod |
|- ( ( I e. W /\ R e. Ring ) -> P e. LMod ) |
14 |
5 6 13
|
syl2anc |
|- ( ph -> P e. LMod ) |
15 |
1 5 6
|
mplsca |
|- ( ph -> R = ( Scalar ` P ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
17 |
4 16
|
syl5eq |
|- ( ph -> C = ( Base ` ( Scalar ` P ) ) ) |
18 |
8 17
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( Scalar ` P ) ) ) |
19 |
1 7 3 11 2 5 6 9
|
mplmon |
|- ( ph -> ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) |
20 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
21 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
22 |
7 20 10 21
|
lmodvscl |
|- ( ( P e. LMod /\ X e. ( Base ` ( Scalar ` P ) ) /\ ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) |
23 |
14 18 19 22
|
syl3anc |
|- ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) |
24 |
12 23
|
eqeltrrd |
|- ( ph -> ( y e. D |-> if ( y = K , X , .0. ) ) e. B ) |