| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmon2cl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplmon2cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 3 |
|
mplmon2cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplmon2cl.c |
⊢ 𝐶 = ( Base ‘ 𝑅 ) |
| 5 |
|
mplmon2cl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplmon2cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
mplmon2cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 8 |
|
mplmon2cl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 9 |
|
mplmon2cl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) |
| 10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 12 |
1 10 2 11 3 4 5 6 9 8
|
mplmon2 |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ) |
| 13 |
1 5 6
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 14 |
1 5 6
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 16 |
4 15
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 17 |
8 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 18 |
1 7 3 11 2 5 6 9
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) |
| 19 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 21 |
7 19 10 20
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
| 22 |
13 17 18 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
| 23 |
12 22
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 ) |