| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmon2cl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplmon2cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 3 |
|
mplmon2cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplmon2cl.c |
⊢ 𝐶 = ( Base ‘ 𝑅 ) |
| 5 |
|
mplmon2cl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplmon2mul.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
mplmon2mul.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 8 |
|
mplmon2mul.u |
⊢ · = ( .r ‘ 𝑅 ) |
| 9 |
|
mplmon2mul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 10 |
|
mplmon2mul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 11 |
|
mplmon2mul.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
| 12 |
|
mplmon2mul.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
| 13 |
1
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 14 |
5 6 13
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 15 |
1 5 6
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 17 |
4 16
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 18 |
11 17
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 21 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 23 |
1 19 3 20 2 5 22 9
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 24 |
|
assalmod |
⊢ ( 𝑃 ∈ AssAlg → 𝑃 ∈ LMod ) |
| 25 |
14 24
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 26 |
12 17
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 27 |
1 19 3 20 2 5 22 10
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 28 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 29 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 30 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 31 |
19 28 29 30
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 32 |
25 26 27 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 33 |
19 28 30 29 7
|
assaass |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 34 |
14 18 23 32 33
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 35 |
19 28 30 29 7
|
assaassr |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 36 |
14 26 23 27 35
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 38 |
1 19 3 20 2 5 22 9 7 10
|
mplmonmul |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 41 |
2
|
psrbagaddcl |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 ∘f + 𝑌 ) ∈ 𝐷 ) |
| 42 |
9 10 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∘f + 𝑌 ) ∈ 𝐷 ) |
| 43 |
1 19 3 20 2 5 22 42
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 44 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑃 ) ) = ( .r ‘ ( Scalar ‘ 𝑃 ) ) |
| 45 |
19 28 29 30 44
|
lmodvsass |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 46 |
25 18 26 43 45
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 47 |
15
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 48 |
8 47
|
eqtr2id |
⊢ ( 𝜑 → ( .r ‘ ( Scalar ‘ 𝑃 ) ) = · ) |
| 49 |
48
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) = ( 𝐹 · 𝐺 ) ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 51 |
40 46 50
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 52 |
34 37 51
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 53 |
1 29 2 20 3 4 5 22 9 11
|
mplmon2 |
⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ) |
| 54 |
1 29 2 20 3 4 5 22 10 12
|
mplmon2 |
⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) |
| 55 |
53 54
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) ) |
| 56 |
4 8
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 · 𝐺 ) ∈ 𝐶 ) |
| 57 |
22 11 12 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐶 ) |
| 58 |
1 29 2 20 3 4 5 22 42 57
|
mplmon2 |
⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 𝐹 · 𝐺 ) , 0 ) ) ) |
| 59 |
52 55 58
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 𝐹 · 𝐺 ) , 0 ) ) ) |