| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplind.sk |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 2 |
|
mplind.sv |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 3 |
|
mplind.sy |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
| 4 |
|
mplind.sp |
⊢ + = ( +g ‘ 𝑌 ) |
| 5 |
|
mplind.st |
⊢ · = ( .r ‘ 𝑌 ) |
| 6 |
|
mplind.sc |
⊢ 𝐶 = ( algSc ‘ 𝑌 ) |
| 7 |
|
mplind.sb |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 8 |
|
mplind.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 ) |
| 9 |
|
mplind.t |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) |
| 10 |
|
mplind.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
| 11 |
|
mplind.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) |
| 12 |
|
mplind.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 13 |
|
mplind.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 14 |
|
mplind.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 15 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 16 |
15 13 14
|
psrassa |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
| 17 |
|
inss2 |
⊢ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 |
| 18 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 |
15 3 7 13 19
|
mplsubrg |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 22 |
21
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 23 |
20 22
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 24 |
17 23
|
sstrid |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 25 |
3 2 7 13 19
|
mvrf2 |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 26 |
25
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 27 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) |
| 28 |
|
fnfvrnss |
⊢ ( ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) → ran 𝑉 ⊆ 𝐻 ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐻 ) |
| 30 |
25
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐵 ) |
| 31 |
29 30
|
ssind |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
| 32 |
|
eqid |
⊢ ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 33 |
32 21
|
aspss |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
| 34 |
16 24 31 33
|
syl3anc |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
| 35 |
3 15 2 32 13 14
|
mplbas2 |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑌 ) ) |
| 36 |
35 7
|
eqtr4di |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = 𝐵 ) |
| 37 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) |
| 38 |
3
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
| 39 |
13 14 38
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ AssAlg ) |
| 40 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
| 41 |
6 40
|
asclrhm |
⊢ ( 𝑌 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
| 42 |
39 41
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
| 43 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) |
| 44 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
| 45 |
43 44
|
rhm1 |
⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
| 46 |
42 45
|
syl |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) ) |
| 49 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
| 50 |
3 13 14
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 51 |
50 19
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Ring ) |
| 52 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
| 53 |
52 43
|
ringidcl |
⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 54 |
51 53
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 55 |
50
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 56 |
1 55
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 57 |
54 56
|
eleqtrrd |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ 𝐾 ) |
| 58 |
48 49 57
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) |
| 59 |
46 58
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐻 ) |
| 60 |
|
assaring |
⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ Ring ) |
| 61 |
39 60
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 62 |
7 44
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 64 |
59 63
|
elind |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 65 |
64
|
ne0d |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ≠ ∅ ) |
| 66 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑧 ∈ 𝐻 ) |
| 67 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑤 ∈ 𝐻 ) |
| 68 |
66 67
|
anim12i |
⊢ ( ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
| 69 |
8
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
| 70 |
68 69
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
| 71 |
|
assalmod |
⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ LMod ) |
| 72 |
39 71
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| 73 |
|
lmodgrp |
⊢ ( 𝑌 ∈ LMod → 𝑌 ∈ Grp ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Grp ) |
| 76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 77 |
76
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 78 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 79 |
78
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
| 80 |
7 4
|
grpcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 81 |
75 77 79 80
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 82 |
70 81
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 83 |
82
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 84 |
83
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 85 |
|
eqid |
⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) |
| 86 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Ring ) |
| 87 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 88 |
87
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 89 |
7 5 44 85 86 88
|
ringnegl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) = ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ) |
| 90 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝜑 ) |
| 91 |
|
rhmghm |
⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) |
| 92 |
42 91
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) |
| 93 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑌 ) ) = ( invg ‘ ( Scalar ‘ 𝑌 ) ) |
| 94 |
52 93 85
|
ghminv |
⊢ ( ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
| 95 |
92 54 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
| 96 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
| 97 |
95 96
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
| 99 |
98
|
eleq1d |
⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) ) |
| 100 |
|
ringgrp |
⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( Scalar ‘ 𝑌 ) ∈ Grp ) |
| 101 |
51 100
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Grp ) |
| 102 |
52 93
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑌 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 103 |
101 54 102
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 104 |
103 56
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐾 ) |
| 105 |
99 49 104
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) |
| 106 |
97 105
|
eqeltrrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
| 108 |
87
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐻 ) |
| 109 |
9
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
| 110 |
90 107 108 109
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
| 111 |
89 110
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐻 ) |
| 112 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Grp ) |
| 113 |
7 85
|
grpinvcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 114 |
112 88 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 115 |
111 114
|
elind |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 116 |
84 115
|
jca |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
| 117 |
116
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
| 118 |
7 4 85
|
issubg2 |
⊢ ( 𝑌 ∈ Grp → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
| 119 |
74 118
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
| 120 |
37 65 117 119
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ) |
| 121 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑥 ∈ 𝐻 ) |
| 122 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑦 ∈ 𝐻 ) |
| 123 |
121 122
|
anim12i |
⊢ ( ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) |
| 124 |
123 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) |
| 125 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Ring ) |
| 126 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 127 |
126
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 128 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 129 |
128
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 130 |
7 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 131 |
125 127 129 130
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 132 |
124 131
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 133 |
132
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 134 |
7 44 5
|
issubrg2 |
⊢ ( 𝑌 ∈ Ring → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 135 |
61 134
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 136 |
120 64 133 135
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) |
| 137 |
3 15 7
|
mplval2 |
⊢ 𝑌 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 ) |
| 138 |
137
|
subsubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
| 139 |
138
|
simprbda |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 140 |
20 136 139
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 141 |
|
assalmod |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
| 142 |
16 141
|
syl |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
| 143 |
15 3 7 13 19
|
mpllss |
⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 144 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ AssAlg ) |
| 145 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 146 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 147 |
146
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
| 148 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
| 149 |
6 40 52 7 5 148
|
asclmul1 |
⊢ ( ( 𝑌 ∈ AssAlg ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
| 150 |
144 145 147 149
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
| 151 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑧 ) ) |
| 152 |
151
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) ) |
| 153 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
| 154 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 155 |
145 154
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐾 ) |
| 156 |
152 153 155
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) |
| 157 |
146
|
elin1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐻 ) |
| 158 |
156 157
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
| 159 |
9
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
| 160 |
158 159
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
| 161 |
150 160
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐻 ) |
| 162 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ LMod ) |
| 163 |
7 40 148 52
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
| 164 |
162 145 147 163
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
| 165 |
161 164
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 166 |
165
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 167 |
|
eqid |
⊢ ( LSubSp ‘ 𝑌 ) = ( LSubSp ‘ 𝑌 ) |
| 168 |
40 52 7 148 167
|
islss4 |
⊢ ( 𝑌 ∈ LMod → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 169 |
72 168
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 170 |
120 166 169
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) |
| 171 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 172 |
137 171 167
|
lsslss |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
| 173 |
172
|
simprbda |
⊢ ( ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 174 |
142 143 170 173
|
syl21anc |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 175 |
32 21 171
|
aspid |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
| 176 |
16 140 174 175
|
syl3anc |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
| 177 |
34 36 176
|
3sstr3d |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
| 178 |
177 12
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 179 |
178
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐻 ) |