| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aspval.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
| 2 |
|
aspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
aspval.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑊 ∈ AssAlg ) |
| 5 |
2
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ 𝑉 ) |
| 6 |
5
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ⊆ 𝑉 ) |
| 7 |
1 2 3
|
aspval |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 9 |
|
3simpc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) ) |
| 10 |
|
elin |
⊢ ( 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ↔ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
| 12 |
|
intmin |
⊢ ( 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } = 𝑆 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } = 𝑆 ) |
| 14 |
8 13
|
eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐴 ‘ 𝑆 ) = 𝑆 ) |