| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aspval.a |
|- A = ( AlgSpan ` W ) |
| 2 |
|
aspval.v |
|- V = ( Base ` W ) |
| 3 |
|
aspval.l |
|- L = ( LSubSp ` W ) |
| 4 |
|
simp1 |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> W e. AssAlg ) |
| 5 |
2
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ V ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S C_ V ) |
| 7 |
1 2 3
|
aspval |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 9 |
|
3simpc |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( S e. ( SubRing ` W ) /\ S e. L ) ) |
| 10 |
|
elin |
|- ( S e. ( ( SubRing ` W ) i^i L ) <-> ( S e. ( SubRing ` W ) /\ S e. L ) ) |
| 11 |
9 10
|
sylibr |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S e. ( ( SubRing ` W ) i^i L ) ) |
| 12 |
|
intmin |
|- ( S e. ( ( SubRing ` W ) i^i L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) |
| 13 |
11 12
|
syl |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) |
| 14 |
8 13
|
eqtrd |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = S ) |