| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a |  |-  A = ( AlgSpan ` W ) | 
						
							| 2 |  | aspval.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 4 | 1 2 3 | aspval |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) | 
						
							| 5 |  | ssrab2 |  |-  { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | 
						
							| 6 |  | inss1 |  |-  ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) C_ ( SubRing ` W ) | 
						
							| 7 | 5 6 | sstri |  |-  { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) | 
						
							| 8 |  | fvex |  |-  ( A ` S ) e. _V | 
						
							| 9 | 4 8 | eqeltrrdi |  |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) | 
						
							| 10 |  | intex |  |-  ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) | 
						
							| 12 |  | subrgint |  |-  ( ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) /\ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) | 
						
							| 13 | 7 11 12 | sylancr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) | 
						
							| 14 | 4 13 | eqeltrd |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) ) |