Metamath Proof Explorer


Theorem aspsubrg

Description: The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A=AlgSpanW
aspval.v V=BaseW
Assertion aspsubrg WAssAlgSVASSubRingW

Proof

Step Hyp Ref Expression
1 aspval.a A=AlgSpanW
2 aspval.v V=BaseW
3 eqid LSubSpW=LSubSpW
4 1 2 3 aspval WAssAlgSVAS=tSubRingWLSubSpW|St
5 ssrab2 tSubRingWLSubSpW|StSubRingWLSubSpW
6 inss1 SubRingWLSubSpWSubRingW
7 5 6 sstri tSubRingWLSubSpW|StSubRingW
8 fvex ASV
9 4 8 eqeltrrdi WAssAlgSVtSubRingWLSubSpW|StV
10 intex tSubRingWLSubSpW|SttSubRingWLSubSpW|StV
11 9 10 sylibr WAssAlgSVtSubRingWLSubSpW|St
12 subrgint tSubRingWLSubSpW|StSubRingWtSubRingWLSubSpW|SttSubRingWLSubSpW|StSubRingW
13 7 11 12 sylancr WAssAlgSVtSubRingWLSubSpW|StSubRingW
14 4 13 eqeltrd WAssAlgSVASSubRingW