| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aspval.a |
|
| 2 |
|
aspval.v |
|
| 3 |
|
aspval.l |
|
| 4 |
|
fveq2 |
|
| 5 |
4 2
|
eqtr4di |
|
| 6 |
5
|
pweqd |
|
| 7 |
|
fveq2 |
|
| 8 |
|
fveq2 |
|
| 9 |
8 3
|
eqtr4di |
|
| 10 |
7 9
|
ineq12d |
|
| 11 |
10
|
rabeqdv |
|
| 12 |
11
|
inteqd |
|
| 13 |
6 12
|
mpteq12dv |
|
| 14 |
|
df-asp |
|
| 15 |
2
|
fvexi |
|
| 16 |
15
|
pwex |
|
| 17 |
16
|
mptex |
|
| 18 |
13 14 17
|
fvmpt |
|
| 19 |
1 18
|
eqtrid |
|
| 20 |
19
|
fveq1d |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
|
sseq1 |
|
| 24 |
23
|
rabbidv |
|
| 25 |
24
|
inteqd |
|
| 26 |
|
simpr |
|
| 27 |
15
|
elpw2 |
|
| 28 |
26 27
|
sylibr |
|
| 29 |
|
assaring |
|
| 30 |
2
|
subrgid |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
assalmod |
|
| 33 |
2 3
|
lss1 |
|
| 34 |
32 33
|
syl |
|
| 35 |
31 34
|
elind |
|
| 36 |
|
sseq2 |
|
| 37 |
36
|
rspcev |
|
| 38 |
35 37
|
sylan |
|
| 39 |
|
intexrab |
|
| 40 |
38 39
|
sylib |
|
| 41 |
22 25 28 40
|
fvmptd3 |
|
| 42 |
21 41
|
eqtrd |
|