Metamath Proof Explorer


Theorem aspval

Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A=AlgSpanW
aspval.v V=BaseW
aspval.l L=LSubSpW
Assertion aspval WAssAlgSVAS=tSubRingWL|St

Proof

Step Hyp Ref Expression
1 aspval.a A=AlgSpanW
2 aspval.v V=BaseW
3 aspval.l L=LSubSpW
4 fveq2 w=WBasew=BaseW
5 4 2 eqtr4di w=WBasew=V
6 5 pweqd w=W𝒫Basew=𝒫V
7 fveq2 w=WSubRingw=SubRingW
8 fveq2 w=WLSubSpw=LSubSpW
9 8 3 eqtr4di w=WLSubSpw=L
10 7 9 ineq12d w=WSubRingwLSubSpw=SubRingWL
11 10 rabeqdv w=WtSubRingwLSubSpw|st=tSubRingWL|st
12 11 inteqd w=WtSubRingwLSubSpw|st=tSubRingWL|st
13 6 12 mpteq12dv w=Ws𝒫BasewtSubRingwLSubSpw|st=s𝒫VtSubRingWL|st
14 df-asp AlgSpan=wAssAlgs𝒫BasewtSubRingwLSubSpw|st
15 2 fvexi VV
16 15 pwex 𝒫VV
17 16 mptex s𝒫VtSubRingWL|stV
18 13 14 17 fvmpt WAssAlgAlgSpanW=s𝒫VtSubRingWL|st
19 1 18 eqtrid WAssAlgA=s𝒫VtSubRingWL|st
20 19 fveq1d WAssAlgAS=s𝒫VtSubRingWL|stS
21 20 adantr WAssAlgSVAS=s𝒫VtSubRingWL|stS
22 eqid s𝒫VtSubRingWL|st=s𝒫VtSubRingWL|st
23 sseq1 s=SstSt
24 23 rabbidv s=StSubRingWL|st=tSubRingWL|St
25 24 inteqd s=StSubRingWL|st=tSubRingWL|St
26 simpr WAssAlgSVSV
27 15 elpw2 S𝒫VSV
28 26 27 sylibr WAssAlgSVS𝒫V
29 assaring WAssAlgWRing
30 2 subrgid WRingVSubRingW
31 29 30 syl WAssAlgVSubRingW
32 assalmod WAssAlgWLMod
33 2 3 lss1 WLModVL
34 32 33 syl WAssAlgVL
35 31 34 elind WAssAlgVSubRingWL
36 sseq2 t=VStSV
37 36 rspcev VSubRingWLSVtSubRingWLSt
38 35 37 sylan WAssAlgSVtSubRingWLSt
39 intexrab tSubRingWLSttSubRingWL|StV
40 38 39 sylib WAssAlgSVtSubRingWL|StV
41 22 25 28 40 fvmptd3 WAssAlgSVs𝒫VtSubRingWL|stS=tSubRingWL|St
42 21 41 eqtrd WAssAlgSVAS=tSubRingWL|St