Metamath Proof Explorer


Theorem asplss

Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
aspval.l L = LSubSp W
Assertion asplss W AssAlg S V A S L

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 aspval.l L = LSubSp W
4 1 2 3 aspval W AssAlg S V A S = t SubRing W L | S t
5 assalmod W AssAlg W LMod
6 5 adantr W AssAlg S V W LMod
7 ssrab2 t SubRing W L | S t SubRing W L
8 inss2 SubRing W L L
9 7 8 sstri t SubRing W L | S t L
10 9 a1i W AssAlg S V t SubRing W L | S t L
11 fvex A S V
12 4 11 eqeltrrdi W AssAlg S V t SubRing W L | S t V
13 intex t SubRing W L | S t t SubRing W L | S t V
14 12 13 sylibr W AssAlg S V t SubRing W L | S t
15 3 lssintcl W LMod t SubRing W L | S t L t SubRing W L | S t t SubRing W L | S t L
16 6 10 14 15 syl3anc W AssAlg S V t SubRing W L | S t L
17 4 16 eqeltrd W AssAlg S V A S L